These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
292 related items for PubMed ID: 1900534
1. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. Barford D, Hu SH, Johnson LN. J Mol Biol; 1991 Mar 05; 218(1):233-60. PubMed ID: 1900534 [Abstract] [Full Text] [Related]
2. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbo xylate. Oikonomakos NG, Tsitsanou KE, Zographos SE, Skamnaki VT, Goldmann S, Bischoff H. Protein Sci; 1999 Oct 05; 8(10):1930-45. PubMed ID: 10548038 [Abstract] [Full Text] [Related]
3. Subunit interactions and the allosteric response in phosphorylase. Sprang S, Fletterick RJ. Biophys J; 1980 Oct 05; 32(1):175-92. PubMed ID: 6788104 [Abstract] [Full Text] [Related]
4. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Oikonomakos NG, Skamnaki VT, Tsitsanou KE, Gavalas NG, Johnson LN. Structure; 2000 Jun 15; 8(6):575-84. PubMed ID: 10873856 [Abstract] [Full Text] [Related]
5. Control of phosphorylase b conformation by a modified cofactor: crystallographic studies on R-state glycogen phosphorylase reconstituted with pyridoxal 5'-diphosphate. Leonidas DD, Oikonomakos NG, Papageorgiou AC, Acharya KR, Barford D, Johnson LN. Protein Sci; 1992 Sep 15; 1(9):1112-22. PubMed ID: 1304390 [Abstract] [Full Text] [Related]
10. Comparison of AMP and NADH binding to glycogen phosphorylase b. Stura EA, Zanotti G, Babu YS, Sansom MS, Stuart DI, Wilson KS, Johnson LN, Van de Werve G. J Mol Biol; 1983 Oct 25; 170(2):529-65. PubMed ID: 6415289 [Abstract] [Full Text] [Related]
12. Multiple phosphate positions in the catalytic site of glycogen phosphorylase: structure of the pyridoxal-5'-pyrophosphate coenzyme-substrate analog. Sprang SR, Madsen NB, Withers SG. Protein Sci; 1992 Sep 25; 1(9):1100-11. PubMed ID: 1304389 [Abstract] [Full Text] [Related]
13. Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Sprang SR, Withers SG, Goldsmith EJ, Fletterick RJ, Madsen NB. Science; 1991 Nov 29; 254(5036):1367-71. PubMed ID: 1962195 [Abstract] [Full Text] [Related]
14. Partial activation of muscle phosphorylase by replacement of serine 14 with acidic residues at the site of regulatory phosphorylation. Buchbinder JL, Luong CB, Browner MF, Fletterick RJ. Biochemistry; 1997 Jul 01; 36(26):8039-44. PubMed ID: 9201951 [Abstract] [Full Text] [Related]
16. Structural changes in glycogen phosphorylase induced by phosphorylation. Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN. Nature; 1988 Nov 17; 336(6196):215-21. PubMed ID: 3194008 [Abstract] [Full Text] [Related]
17. Structure of the nucleotide activation switch in glycogen phosphorylase a. Sprang S, Goldsmith E, Fletterick R. Science; 1987 Aug 28; 237(4818):1012-9. PubMed ID: 3616621 [Abstract] [Full Text] [Related]
18. [Chemical reactivity of an essential arginine residue in substrate binding, reflecting the state of activation of glycogen phosphorylase in rabbit muscle]. Vandenbunder B, Dreyfus M, Buc H. C R Seances Acad Sci D; 1979 Nov 12; 289(12):837-40. PubMed ID: 121246 [Abstract] [Full Text] [Related]