These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 19009443

  • 41. Biolistic transformation of Caenorhabditis elegans.
    Isik M, Berezikov E.
    Methods Mol Biol; 2013; 940():77-86. PubMed ID: 23104335
    [Abstract] [Full Text] [Related]

  • 42. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.
    Joyce P, Hermann S, O'Connell A, Dinh Q, Shumbe L, Lakshmanan P.
    Plant Biotechnol J; 2014 May; 12(4):411-24. PubMed ID: 24330327
    [Abstract] [Full Text] [Related]

  • 43. Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation.
    Risacher T, Craze M, Bowden S, Paul W, Barsby T.
    Methods Mol Biol; 2009 May; 478():115-24. PubMed ID: 19009442
    [Abstract] [Full Text] [Related]

  • 44. Analysis of promoters in transgenic barley and wheat.
    Furtado A, Henry RJ, Pellegrineschi A.
    Plant Biotechnol J; 2009 Apr; 7(3):240-53. PubMed ID: 19175520
    [Abstract] [Full Text] [Related]

  • 45. Biolistic co-transformation of the nuclear and plastid genomes.
    Elghabi Z, Ruf S, Bock R.
    Plant J; 2011 Sep; 67(5):941-8. PubMed ID: 21554457
    [Abstract] [Full Text] [Related]

  • 46. Genetic Transformation of Hordeum vulgare ssp. spontaneum for the Development of a Transposon-Based Insertional Mutagenesis System.
    Cardinal MJ, Kaur R, Singh J.
    Mol Biotechnol; 2016 Oct; 58(10):672-683. PubMed ID: 27480175
    [Abstract] [Full Text] [Related]

  • 47. Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process.
    Tseng MJ, Yang MT, Chu WR, Liu CW.
    Methods Mol Biol; 2014 Oct; 1132():355-66. PubMed ID: 24599866
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Cassava (Manihot esculenta Crantz).
    Msikita W, Ihemere U, Siritunga D, Sayre RT.
    Methods Mol Biol; 2006 Oct; 344():13-24. PubMed ID: 17033047
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Particle bombardment technology and its applications in plants.
    Ozyigit II, Yucebilgili Kurtoglu K.
    Mol Biol Rep; 2020 Dec; 47(12):9831-9847. PubMed ID: 33222118
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. Choice of Explant for Plant Genetic Transformation.
    Chakraborty N, Chakraborty P, Sen M, Bandopadhyay R.
    Methods Mol Biol; 2020 Dec; 2124():107-123. PubMed ID: 32277450
    [Abstract] [Full Text] [Related]

  • 58. Tall Fescue (Festuca arundinacea Schreb.).
    Ge Y, Wang ZY.
    Methods Mol Biol; 2006 Dec; 344():75-81. PubMed ID: 17033053
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. STARTS--a stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley.
    Imani J, Li L, Schäfer P, Kogel KH.
    Plant J; 2011 Aug; 67(4):726-35. PubMed ID: 21518054
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.