These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 19019080

  • 1. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase.
    Liang D, Blouet JP, Borrega F, Bon S, Massoulié J.
    FEBS J; 2009 Jan; 276(1):94-108. PubMed ID: 19019080
    [Abstract] [Full Text] [Related]

  • 2. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring.
    Massoulié J, Bon S, Perrier N, Falasca C.
    Chem Biol Interact; 2005 Dec 15; 157-158():3-14. PubMed ID: 16257397
    [Abstract] [Full Text] [Related]

  • 3. Lamellipodin proline rich peptides associated with native plasma butyrylcholinesterase tetramers.
    Li H, Schopfer LM, Masson P, Lockridge O.
    Biochem J; 2008 Apr 15; 411(2):425-32. PubMed ID: 18076380
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. The intact human acetylcholinesterase C-terminal oligomerization domain is alpha-helical in situ and in isolation, but a shorter fragment forms beta-sheet-rich amyloid fibrils and protofibrillar oligomers.
    Cottingham MG, Voskuil JL, Vaux DJ.
    Biochemistry; 2003 Sep 16; 42(36):10863-73. PubMed ID: 12962511
    [Abstract] [Full Text] [Related]

  • 6. Acetylcholinesterase from the invertebrate Ciona intestinalis is capable of assembling into asymmetric forms when co-expressed with vertebrate collagenic tail peptide.
    Frederick A, Tsigelny I, Cohenour F, Spiker C, Krejci E, Chatonnet A, Bourgoin S, Richards G, Allen T, Whitlock MH, Pezzementi L.
    FEBS J; 2008 Mar 16; 275(6):1309-22. PubMed ID: 18279391
    [Abstract] [Full Text] [Related]

  • 7. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation.
    Belbeoc'h S, Falasca C, Leroy J, Ayon A, Massoulié J, Bon S.
    Eur J Biochem; 2004 Apr 16; 271(8):1476-87. PubMed ID: 15066173
    [Abstract] [Full Text] [Related]

  • 8. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.
    Biochem J; 2003 Jul 01; 373(Pt 1):33-40. PubMed ID: 12665427
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway.
    Simon S, Krejci E, Massoulié J.
    EMBO J; 1998 Nov 02; 17(21):6178-87. PubMed ID: 9799227
    [Abstract] [Full Text] [Related]

  • 12. Wild-type and A328W mutant human butyrylcholinesterase tetramers expressed in Chinese hamster ovary cells have a 16-hour half-life in the circulation and protect mice from cocaine toxicity.
    Duysen EG, Bartels CF, Lockridge O.
    J Pharmacol Exp Ther; 2002 Aug 02; 302(2):751-8. PubMed ID: 12130740
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The PRiMA-linked cholinesterase tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain.
    Chen VP, Xie HQ, Chan WKB, Leung KW, Chan GKL, Choi RCY, Bon S, Massoulié J, Tsim KWK.
    J Biol Chem; 2010 Aug 27; 285(35):27265-27278. PubMed ID: 20566626
    [Abstract] [Full Text] [Related]

  • 15. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase.
    Girard E, Bernard V, Camp S, Taylor P, Krejci E, Molgó J.
    J Mol Neurosci; 2006 Aug 27; 30(1-2):99-100. PubMed ID: 17192646
    [Abstract] [Full Text] [Related]

  • 16. Inhibition of two different cholinesterases by tacrine.
    Ahmed M, Rocha JB, Corrêa M, Mazzanti CM, Zanin RF, Morsch AL, Morsch VM, Schetinger MR.
    Chem Biol Interact; 2006 Aug 25; 162(2):165-71. PubMed ID: 16860785
    [Abstract] [Full Text] [Related]

  • 17. Butyrylcholinesterase attenuates amyloid fibril formation in vitro.
    Diamant S, Podoly E, Friedler A, Ligumsky H, Livnah O, Soreq H.
    Proc Natl Acad Sci U S A; 2006 Jun 06; 103(23):8628-33. PubMed ID: 16731619
    [Abstract] [Full Text] [Related]

  • 18. Association of tetramers of human butyrylcholinesterase is mediated by conserved aromatic residues of the carboxy terminus.
    Altamirano CV, Lockridge O.
    Chem Biol Interact; 1999 May 14; 119-120():53-60. PubMed ID: 10421438
    [Abstract] [Full Text] [Related]

  • 19. Active site gating and substrate specificity of butyrylcholinesterase and acetylcholinesterase: insights from molecular dynamics simulations.
    Fang L, Pan Y, Muzyka JL, Zhan CG.
    J Phys Chem B; 2011 Jul 14; 115(27):8797-805. PubMed ID: 21682268
    [Abstract] [Full Text] [Related]

  • 20. Selective enhancement of the activity of C-terminally truncated, but not intact, acetylcholinesterase.
    Zimmermann M, Grösgen S, Westwell MS, Greenfield SA.
    J Neurochem; 2008 Jan 14; 104(1):221-32. PubMed ID: 17986217
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.