These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 19019974

  • 1. Force regulation of ankle extensor muscle activity in freely walking cats.
    Donelan JM, McVea DA, Pearson KG.
    J Neurophysiol; 2009 Jan; 101(1):360-71. PubMed ID: 19019974
    [Abstract] [Full Text] [Related]

  • 2. Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
    Donelan JM, Pearson KG.
    J Neurophysiol; 2004 Oct; 92(4):2093-104. PubMed ID: 15381742
    [Abstract] [Full Text] [Related]

  • 3. Control of ankle extensor muscle activity in walking cats.
    Hatz K, Mombaur K, Donelan JM.
    J Neurophysiol; 2012 Nov; 108(10):2785-93. PubMed ID: 22933727
    [Abstract] [Full Text] [Related]

  • 4. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns.
    Gregor RJ, Smith DW, Prilutsky BI.
    J Neurophysiol; 2006 Mar; 95(3):1397-409. PubMed ID: 16207777
    [Abstract] [Full Text] [Related]

  • 5. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR, Sasaki K.
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [Abstract] [Full Text] [Related]

  • 6. Plasticity of reflexes from the foot during locomotion after denervating ankle extensors in intact cats.
    Frigon A, Rossignol S.
    J Neurophysiol; 2007 Oct; 98(4):2122-32. PubMed ID: 17652411
    [Abstract] [Full Text] [Related]

  • 7. Studying the nervous system under physiological conditions. Focus on "contribution of force feedback to ankle extensor activity in decerebrate walking cats".
    Cattaert D.
    J Neurophysiol; 2004 Oct; 92(4):1967-8. PubMed ID: 15381737
    [No Abstract] [Full Text] [Related]

  • 8. Sudden drop in ground support produces force-related unload response in human overground walking.
    Af Klint R, Nielsen JB, Sinkjaer T, Grey MJ.
    J Neurophysiol; 2009 Apr; 101(4):1705-12. PubMed ID: 19164100
    [Abstract] [Full Text] [Related]

  • 9. The effects of self-reinnervation of cat medial and lateral gastrocnemius muscles on hindlimb kinematics in slope walking.
    Maas H, Prilutsky BI, Nichols TR, Gregor RJ.
    Exp Brain Res; 2007 Aug; 181(2):377-93. PubMed ID: 17406860
    [Abstract] [Full Text] [Related]

  • 10. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats.
    Bouyer LJ, Rossignol S.
    J Neurophysiol; 2003 Dec; 90(6):3625-39. PubMed ID: 12944536
    [Abstract] [Full Text] [Related]

  • 11. A role for hip position in initiating the swing-to-stance transition in walking cats.
    McVea DA, Donelan JM, Tachibana A, Pearson KG.
    J Neurophysiol; 2005 Nov; 94(5):3497-508. PubMed ID: 16093331
    [Abstract] [Full Text] [Related]

  • 12. Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking.
    Donelan JM, Pearson KG.
    Can J Physiol Pharmacol; 2004 Nov; 82(8-9):589-98. PubMed ID: 15523516
    [Abstract] [Full Text] [Related]

  • 13. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N, Ekeberg O.
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [Abstract] [Full Text] [Related]

  • 14. Distinct muscle fascicle length changes in feline medial gastrocnemius and soleus muscles during slope walking.
    Maas H, Gregor RJ, Hodson-Tole EF, Farrell BJ, Prilutsky BI.
    J Appl Physiol (1985); 2009 Apr; 106(4):1169-80. PubMed ID: 19164776
    [Abstract] [Full Text] [Related]

  • 15. Control of ground reaction forces by hindlimb muscles during cat locomotion.
    Kaya M, Leonard TR, Herzog W.
    J Biomech; 2006 Apr; 39(15):2752-66. PubMed ID: 16310793
    [Abstract] [Full Text] [Related]

  • 16. Positive force feedback in human walking.
    Grey MJ, Nielsen JB, Mazzaro N, Sinkjaer T.
    J Physiol; 2007 May 15; 581(Pt 1):99-105. PubMed ID: 17331984
    [Abstract] [Full Text] [Related]

  • 17. Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat.
    Hiebert GW, Pearson KG.
    J Neurophysiol; 1999 Feb 15; 81(2):758-70. PubMed ID: 10036275
    [Abstract] [Full Text] [Related]

  • 18. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O, Pearson K.
    J Neurophysiol; 2005 Dec 15; 94(6):4256-68. PubMed ID: 16049149
    [Abstract] [Full Text] [Related]

  • 19. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.
    Garnier C, Falempin M, Canu MH.
    Behav Brain Res; 2008 Jan 10; 186(1):57-65. PubMed ID: 17764759
    [Abstract] [Full Text] [Related]

  • 20. Force in the achilles tendon during walking with ankle foot orthosis.
    Fröberg A, Komi P, Ishikawa M, Movin T, Arndt A.
    Am J Sports Med; 2009 Jun 10; 37(6):1200-7. PubMed ID: 19229043
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.