These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 19019974

  • 21. The role of vertebral column muscles in level versus upslope treadmill walking-an electromyographic and kinematic study.
    Wada N, Akatani J, Miyajima N, Shimojo K, Kanda K.
    Brain Res; 2006 May 23; 1090(1):99-109. PubMed ID: 16682013
    [Abstract] [Full Text] [Related]

  • 22. Modulation of proximal muscle function during level versus incline hopping in tammar wallabies (Macropus eugenii).
    McGowan CP, Baudinette RV, Biewener AA.
    J Exp Biol; 2007 Apr 23; 210(Pt 7):1255-65. PubMed ID: 17371924
    [Abstract] [Full Text] [Related]

  • 23. Electromyographic activity of m. longissimus and the kinematics of the vertebral column during level and downslope treadmill walking in cats.
    Wada N, Miyajima N, Akatani J, Shimojo K, Kanda K.
    Brain Res; 2006 Aug 04; 1103(1):140-4. PubMed ID: 16781688
    [Abstract] [Full Text] [Related]

  • 24. Multi-functionality of the cat medical gastrocnemius during locomotion.
    Kaya M, Jinha A, Leonard TR, Herzog W.
    J Biomech; 2005 Jun 04; 38(6):1291-301. PubMed ID: 15863114
    [Abstract] [Full Text] [Related]

  • 25. Role of biomechanics and muscle activation strategy in the production of endpoint force patterns in the cat hindlimb.
    Lemay MA, Bhowmik-Stoker M, McConnell GC, Grill WM.
    J Biomech; 2007 Jun 04; 40(16):3679-87. PubMed ID: 17692854
    [Abstract] [Full Text] [Related]

  • 26. Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat.
    Abelew TA, Miller MD, Cope TC, Nichols TR.
    J Neurophysiol; 2000 Nov 04; 84(5):2709-14. PubMed ID: 11068014
    [Abstract] [Full Text] [Related]

  • 27. The neuromuscular demands of toe walking: a forward dynamics simulation analysis.
    Neptune RR, Burnfield JM, Mulroy SJ.
    J Biomech; 2007 Nov 04; 40(6):1293-300. PubMed ID: 16842801
    [Abstract] [Full Text] [Related]

  • 28. Effect of equinus foot placement and intrinsic muscle response on knee extension during stance.
    Higginson JS, Zajac FE, Neptune RR, Kautz SA, Burgar CG, Delp SL.
    Gait Posture; 2006 Jan 04; 23(1):32-6. PubMed ID: 16311192
    [Abstract] [Full Text] [Related]

  • 29. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N, Toba Y, Iwamoto W, Goto M, Miyata H, Mori F, Morita F.
    Brain Res; 2008 Dec 03; 1243():70-7. PubMed ID: 18835381
    [Abstract] [Full Text] [Related]

  • 30. The effect of gait speed and gender on perceived exertion, muscle activity, joint motion of lower extremity, ground reaction force and heart rate during normal walking.
    Chiu MC, Wang MJ.
    Gait Posture; 2007 Mar 03; 25(3):385-92. PubMed ID: 16814548
    [Abstract] [Full Text] [Related]

  • 31. Altered activation pattern in synergistic ankle plantarflexor muscles in a reduced-gravity environment.
    Miyoshi T, Nakazawa K, Tanizaki M, Sato T, Akai M.
    Gait Posture; 2006 Aug 03; 24(1):94-9. PubMed ID: 16153846
    [Abstract] [Full Text] [Related]

  • 32. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI, Herzog W, Allinger TL.
    J Biomech; 1994 Oct 03; 27(10):1223-35. PubMed ID: 7962010
    [Abstract] [Full Text] [Related]

  • 33. Contribution of hindpaw cutaneous inputs to the control of lateral stability during walking in the cat.
    Bolton DA, Misiaszek JE.
    J Neurophysiol; 2009 Sep 03; 102(3):1711-24. PubMed ID: 19605609
    [Abstract] [Full Text] [Related]

  • 34. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance.
    Jo S, Massaquoi SG.
    Biol Cybern; 2004 Sep 03; 91(3):188-202. PubMed ID: 15372241
    [Abstract] [Full Text] [Related]

  • 35. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C, Kimura H, Takase K.
    Neural Netw; 2008 May 03; 21(4):667-81. PubMed ID: 18490136
    [Abstract] [Full Text] [Related]

  • 36. The influence of strain and activation on the locomotor function of rat ankle extensor muscles.
    Hodson-Tole EF, Wakeling JM.
    J Exp Biol; 2010 Jan 15; 213(2):318-30. PubMed ID: 20038667
    [Abstract] [Full Text] [Related]

  • 37. A neuro-mechanical transducer model for controlling joint rotations and limb movements.
    Laczkó J, Kerry W, Rodolfo L.
    Ideggyogy Sz; 2006 Jan 20; 59(1-2):32-43. PubMed ID: 16491570
    [Abstract] [Full Text] [Related]

  • 38. Role of sensory feedback in the control of stance duration in walking cats.
    Pearson KG.
    Brain Res Rev; 2008 Jan 20; 57(1):222-7. PubMed ID: 17761295
    [Abstract] [Full Text] [Related]

  • 39. Hindlimb muscle activity during unrestrained walking in cats with lesions of the lateral funiculi.
    Zmysłowski W, Górska T, Majczyński H, Bem T.
    Acta Neurobiol Exp (Wars); 1993 Jan 20; 53(1):143-53. PubMed ID: 8317242
    [Abstract] [Full Text] [Related]

  • 40. Triceps surae force, length and velocity during walking.
    Orendurff MS, Segal AD, Aiona MD, Dorociak RD.
    Gait Posture; 2005 Feb 20; 21(2):157-63. PubMed ID: 15639394
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.