These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 190207

  • 21. Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system.
    Saier MH, Roseman S.
    J Biol Chem; 1972 Feb 10; 247(3):972-5. PubMed ID: 4550766
    [No Abstract] [Full Text] [Related]

  • 22. A Mannose Family Phosphotransferase System Permease and Associated Enzymes Are Required for Utilization of Fructoselysine and Glucoselysine in Salmonella enterica Serovar Typhimurium.
    Miller KA, Phillips RS, Kilgore PB, Smith GL, Hoover TR.
    J Bacteriol; 2015 Sep 10; 197(17):2831-9. PubMed ID: 26100043
    [Abstract] [Full Text] [Related]

  • 23. 3-Deoxy-3-fluoro-D-glucose-resistant Salmonella typhimurium mutants defective in the phosphoenolpyruvate:glycose phosphotransferase system.
    Melton T, Kundig W, Hartman PE, Meadow N.
    J Bacteriol; 1976 Dec 10; 128(3):794-800. PubMed ID: 791932
    [Abstract] [Full Text] [Related]

  • 24. Sugar transport. The crr mutation: its effect on repression of enzyme synthesis.
    Saier MH, Roseman S.
    J Biol Chem; 1976 Nov 10; 251(21):6598-605. PubMed ID: 789369
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Selection procedure for mutants defective in the beta-methylgalactoside transport system of Escherichia coli utilizing the compound 2R-glyceryl-beta-D-galactopyranoside.
    Silhavy TJ, Boos W.
    J Bacteriol; 1974 Oct 10; 120(1):424-32. PubMed ID: 4607764
    [Abstract] [Full Text] [Related]

  • 27. Chemotaxis of Salmonella typhimurium to amino acids and some sugars.
    Melton T, Hartman PE, Stratis JP, Lee TL, Davis AT.
    J Bacteriol; 1978 Feb 10; 133(2):708-16. PubMed ID: 342504
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Uptake of galactose into Escherichia coli by facilitated diffusion.
    Kornberg HL, Riordan C.
    J Gen Microbiol; 1976 May 10; 94(1):75-89. PubMed ID: 778334
    [Abstract] [Full Text] [Related]

  • 30. Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium.
    Cordaro JC, Anderson RP, Grogan EW, Wenzel DJ, Engler M, Roseman S.
    J Bacteriol; 1974 Oct 10; 120(1):245-52. PubMed ID: 4608878
    [Abstract] [Full Text] [Related]

  • 31. Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects.
    Adams BG.
    J Bacteriol; 1972 Aug 10; 111(2):308-15. PubMed ID: 4559724
    [Abstract] [Full Text] [Related]

  • 32. Properties of a Salmonella typhimurium mutant with an incomplete deficiency of uridinediphosphogalactose-4-epimerase.
    Krishnapillai V, MacPhee DG, Stocker BA.
    J Bacteriol; 1971 Jul 10; 107(1):155-61. PubMed ID: 4935317
    [Abstract] [Full Text] [Related]

  • 33. Isolation of a mutation resulting in constitutive synthesis of L-fucose catabolic enzymes.
    Bartkus JM, Mortlock RP.
    J Bacteriol; 1986 Mar 10; 165(3):710-4. PubMed ID: 3005235
    [Abstract] [Full Text] [Related]

  • 34. Methionine transport in wild-type and transport-defective mutants of Salmonella typhimurium.
    Ayling PD, Bridgeland ES.
    J Gen Microbiol; 1972 Nov 10; 73(1):127-41. PubMed ID: 4569575
    [No Abstract] [Full Text] [Related]

  • 35. Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system.
    Cirillo VP.
    J Bacteriol; 1968 May 10; 95(5):1727-31. PubMed ID: 5650080
    [Abstract] [Full Text] [Related]

  • 36. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH, Roseman S.
    J Biol Chem; 1976 Nov 10; 251(21):6606-15. PubMed ID: 789370
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Transport systems for galactose and galactosides in Escherichia coli. II. Substrate and inducer specificities.
    Rotman B, Ganesan AK, Guzman R.
    J Mol Biol; 1968 Sep 14; 36(2):247-60. PubMed ID: 4939625
    [No Abstract] [Full Text] [Related]

  • 39. An evolvant of Escherichia coli that employs the L-fucose pathway also for growth on L-galactose and D-arabinose.
    Zhu Y, Lin EC.
    J Mol Evol; 1986 Sep 14; 23(3):259-66. PubMed ID: 3100814
    [Abstract] [Full Text] [Related]

  • 40. Reconstitution of the binding protein-dependent galactose transport of Salmonella typhimurium in proteoliposomes.
    Richarme G, el Yaagoubi A, Kohiyama M.
    Biochim Biophys Acta; 1992 Feb 17; 1104(1):201-6. PubMed ID: 1550848
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.