These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 19023466

  • 1. Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage.
    Stevens DY, Petri CR, Osborn JL, Spicar-Mihalic P, McKenzie KG, Yager P.
    Lab Chip; 2008 Dec; 8(12):2038-45. PubMed ID: 19023466
    [Abstract] [Full Text] [Related]

  • 2. Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards.
    Lafleur L, Stevens D, McKenzie K, Ramachandran S, Spicar-Mihalic P, Singhal M, Arjyal A, Osborn J, Kauffman P, Yager P, Lutz B.
    Lab Chip; 2012 Mar 21; 12(6):1119-27. PubMed ID: 22311085
    [Abstract] [Full Text] [Related]

  • 3. Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network.
    Fridley GE, Le H, Yager P.
    Anal Chem; 2014 Jul 01; 86(13):6447-53. PubMed ID: 24882058
    [Abstract] [Full Text] [Related]

  • 4. Controlled microfluidic reconstitution of functional protein from an anhydrous storage depot.
    Garcia E, Kirkham JR, Hatch AV, Hawkins KR, Yager P.
    Lab Chip; 2004 Feb 01; 4(1):78-82. PubMed ID: 15007445
    [Abstract] [Full Text] [Related]

  • 5. Miniaturized immunoassay microfluidic system with electrokinetic control.
    Xiang Q, Hu G, Gao Y, Li D.
    Biosens Bioelectron; 2006 Apr 15; 21(10):2006-9. PubMed ID: 16289606
    [Abstract] [Full Text] [Related]

  • 6. Controlled release of reagents in capillary-driven microfluidics using reagent integrators.
    Hitzbleck M, Gervais L, Delamarche E.
    Lab Chip; 2011 Aug 21; 11(16):2680-5. PubMed ID: 21674120
    [Abstract] [Full Text] [Related]

  • 7. A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection.
    He F, Grimes J, Alcaine SD, Nugen SR.
    Analyst; 2014 Jun 21; 139(12):3002-8. PubMed ID: 24719901
    [Abstract] [Full Text] [Related]

  • 8. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN, Locascio LE.
    Anal Chem; 2003 Dec 15; 75(24):6906-11. PubMed ID: 14670052
    [Abstract] [Full Text] [Related]

  • 9. The dual role of deposited microbead plug (DMBP): a blood filter and a conjugate reagent carrier toward point-of-care microfluidic immunoassay.
    Li C, Liu C, Xu Z, Li J.
    Talanta; 2012 Aug 15; 97():376-81. PubMed ID: 22841095
    [Abstract] [Full Text] [Related]

  • 10. Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays.
    Parsa H, Chin CD, Mongkolwisetwara P, Lee BW, Wang JJ, Sia SK.
    Lab Chip; 2008 Dec 15; 8(12):2062-70. PubMed ID: 19023469
    [Abstract] [Full Text] [Related]

  • 11. An integrated microfluidic platform for sensitive and rapid detection of biological toxins.
    Meagher RJ, Hatch AV, Renzi RF, Singh AK.
    Lab Chip; 2008 Dec 15; 8(12):2046-53. PubMed ID: 19023467
    [Abstract] [Full Text] [Related]

  • 12. Antibody immobilization on to polystyrene substrate--on-chip immunoassay for horse IgG based on fluorescence.
    Darain F, Gan KL, Tjin SC.
    Biomed Microdevices; 2009 Jun 15; 11(3):653-61. PubMed ID: 19130240
    [Abstract] [Full Text] [Related]

  • 13. Automated immunoassay system for AFP-L3% using on-chip electrokinetic reaction and separation by affinity electrophoresis.
    Kagebayashi C, Yamaguchi I, Akinaga A, Kitano H, Yokoyama K, Satomura M, Kurosawa T, Watanabe M, Kawabata T, Chang W, Li C, Bousse L, Wada HG, Satomura S.
    Anal Biochem; 2009 May 15; 388(2):306-11. PubMed ID: 19250915
    [Abstract] [Full Text] [Related]

  • 14. Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration.
    Fridley GE, Le HQ, Fu E, Yager P.
    Lab Chip; 2012 Nov 07; 12(21):4321-7. PubMed ID: 22960691
    [Abstract] [Full Text] [Related]

  • 15. Superporous agarose beads as a solid support for microfluidic immunoassay.
    Yang Y, Nam SW, Lee NY, Kim YS, Park S.
    Ultramicroscopy; 2008 Sep 07; 108(10):1384-9. PubMed ID: 18550282
    [Abstract] [Full Text] [Related]

  • 16. An automated microfluidic-based immunoassay cartridge for allergen screening and other multiplexed assays.
    Tai LW, Tseng KY, Wang ST, Chiu CC, Kow CH, Chang P, Chen C, Wang JY, Webster JR.
    Anal Biochem; 2009 Aug 15; 391(2):98-105. PubMed ID: 19442647
    [Abstract] [Full Text] [Related]

  • 17. Microfluidic immunoaffinity separations for bioanalysis.
    Peoples MC, Karnes HT.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Apr 15; 866(1-2):14-25. PubMed ID: 17869593
    [Abstract] [Full Text] [Related]

  • 18. Microfluidic diagnostic technologies for global public health.
    Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH.
    Nature; 2006 Jul 27; 442(7101):412-8. PubMed ID: 16871209
    [Abstract] [Full Text] [Related]

  • 19. Bead-based microfluidic immunoassays: the next generation.
    Lim CT, Zhang Y.
    Biosens Bioelectron; 2007 Feb 15; 22(7):1197-204. PubMed ID: 16857357
    [Abstract] [Full Text] [Related]

  • 20. High-performance UV-curable epoxy resin-based microarray and microfluidic immunoassay devices.
    Yu L, Liu Y, Gan Y, Li CM.
    Biosens Bioelectron; 2009 Jun 15; 24(10):2997-3002. PubMed ID: 19346122
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.