These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 19028992

  • 1. Sphingolipid C-9 methyltransferases are important for growth and virulence but not for sensitivity to antifungal plant defensins in Fusarium graminearum.
    Ramamoorthy V, Cahoon EB, Thokala M, Kaur J, Li J, Shah DM.
    Eukaryot Cell; 2009 Feb; 8(2):217-29. PubMed ID: 19028992
    [Abstract] [Full Text] [Related]

  • 2. Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum.
    Ramamoorthy V, Cahoon EB, Li J, Thokala M, Minto RE, Shah DM.
    Mol Microbiol; 2007 Nov; 66(3):771-86. PubMed ID: 17908205
    [Abstract] [Full Text] [Related]

  • 3. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum.
    Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM.
    PLoS One; 2011 Apr 13; 6(4):e18550. PubMed ID: 21533249
    [Abstract] [Full Text] [Related]

  • 4. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum.
    Qin J, Wu M, Zhou S.
    Curr Genet; 2020 Jun 13; 66(3):517-529. PubMed ID: 31728616
    [Abstract] [Full Text] [Related]

  • 5. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins.
    Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH.
    Plant Physiol; 2004 Aug 13; 135(4):2055-67. PubMed ID: 15299136
    [Abstract] [Full Text] [Related]

  • 6. Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling.
    Ternes P, Sperling P, Albrecht S, Franke S, Cregg JM, Warnecke D, Heinz E.
    J Biol Chem; 2006 Mar 03; 281(9):5582-92. PubMed ID: 16339149
    [Abstract] [Full Text] [Related]

  • 7. PDC1, a corn defensin peptide expressed in Escherichia coli and Pichia pastoris inhibits growth of Fusarium graminearum.
    Kant P, Liu WZ, Pauls KP.
    Peptides; 2009 Sep 03; 30(9):1593-9. PubMed ID: 19505517
    [Abstract] [Full Text] [Related]

  • 8. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum.
    Kim Y, Kim H, Son H, Choi GJ, Kim JC, Lee YW.
    PLoS One; 2014 Sep 03; 9(4):e94359. PubMed ID: 24722578
    [Abstract] [Full Text] [Related]

  • 9. The sphinganine C4-hydroxylase FgSur2 regulates sensitivity to azole antifungal agents and virulence of Fusarium graminearum.
    Wang H, Zhang Y, Wang J, Chen Y, Hou T, Zhao Y, Ma Z.
    Microbiol Res; 2023 Jun 03; 271():127347. PubMed ID: 36907072
    [Abstract] [Full Text] [Related]

  • 10. Defensins from insects and plants interact with fungal glucosylceramides.
    Thevissen K, Warnecke DC, François IE, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BP, Ferket KK, Cammue BP.
    J Biol Chem; 2004 Feb 06; 279(6):3900-5. PubMed ID: 14604982
    [Abstract] [Full Text] [Related]

  • 11. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum.
    Ramamoorthy V, Zhao X, Snyder AK, Xu JR, Shah DM.
    Cell Microbiol; 2007 Jun 06; 9(6):1491-506. PubMed ID: 17253976
    [Abstract] [Full Text] [Related]

  • 12. The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans.
    Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K.
    J Mol Microbiol Biotechnol; 2007 Jun 06; 13(4):243-7. PubMed ID: 17827975
    [Abstract] [Full Text] [Related]

  • 13. EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum.
    Zhao C, Waalwijk C, de Wit PJ, van der Lee T, Tang D.
    Mol Plant Microbe Interact; 2011 Dec 06; 24(12):1407-18. PubMed ID: 21830952
    [Abstract] [Full Text] [Related]

  • 14. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum.
    Hu S, Zhou X, Gu X, Cao S, Wang C, Xu JR.
    Mol Plant Microbe Interact; 2014 Jun 06; 27(6):557-66. PubMed ID: 24450772
    [Abstract] [Full Text] [Related]

  • 15. Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum.
    Ding S, Mehrabi R, Koten C, Kang Z, Wei Y, Seong K, Kistler HC, Xu JR.
    Eukaryot Cell; 2009 Jun 06; 8(6):867-76. PubMed ID: 19377037
    [Abstract] [Full Text] [Related]

  • 16. A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence.
    Sella L, Gazzetti K, Faoro F, Odorizzi S, D'Ovidio R, Schäfer W, Favaron F.
    Plant Physiol Biochem; 2013 Mar 06; 64():1-10. PubMed ID: 23337356
    [Abstract] [Full Text] [Related]

  • 17. Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum.
    Fu J, Wu J, Jiang J, Wang Z, Ma Z.
    Fungal Biol; 2013 Jan 06; 117(1):13-21. PubMed ID: 23332829
    [Abstract] [Full Text] [Related]

  • 18. Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation.
    Oura T, Kajiwara S.
    Microbiology (Reading); 2010 Apr 06; 156(Pt 4):1234-1243. PubMed ID: 20019081
    [Abstract] [Full Text] [Related]

  • 19. Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue.
    Cuzick A, Urban M, Hammond-Kosack K.
    New Phytol; 2008 Apr 06; 177(4):990-1000. PubMed ID: 18179606
    [Abstract] [Full Text] [Related]

  • 20. Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB Δ8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity.
    Fernandes CM, de Castro PA, Singh A, Fonseca FL, Pereira MD, Vila TV, Atella GC, Rozental S, Savoldi M, Del Poeta M, Goldman GH, Kurtenbach E.
    Mol Microbiol; 2016 Nov 06; 102(3):488-505. PubMed ID: 27479571
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.