These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 1903444

  • 21. The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue.
    Light PE, Comtois AS, Renaud JM.
    J Physiol; 1994 Mar 15; 475(3):495-507. PubMed ID: 8006831
    [Abstract] [Full Text] [Related]

  • 22. Frequency-dependent effects of Bay K 8644 on tetanic contractions of frog skeletal muscle.
    Oz M, Frank GB.
    Gen Pharmacol; 1997 Jan 15; 28(1):99-103. PubMed ID: 9112084
    [Abstract] [Full Text] [Related]

  • 23. Depression of posttetanic twitch potentiation by low calcium and calcium channel antagonists.
    Williams JH.
    J Appl Physiol (1985); 1990 Sep 15; 69(3):1093-7. PubMed ID: 2246158
    [Abstract] [Full Text] [Related]

  • 24. Pharmacological studies of excitation-contraction coupling in skeletal muscle.
    Frank GB.
    Can J Physiol Pharmacol; 1987 Apr 15; 65(4):711-6. PubMed ID: 2440545
    [Abstract] [Full Text] [Related]

  • 25. Effects of low Na on the tetanic contractility of frog skeletal muscle.
    Hatae J, Kawata H.
    Jpn J Physiol; 1984 Apr 15; 34(4):629-39. PubMed ID: 6503029
    [Abstract] [Full Text] [Related]

  • 26. Inhibition of tetanus tension by elevated extracellular calcium concentration.
    Howell JN, Snowdowne KW.
    Am J Physiol; 1981 May 15; 240(5):C193-200. PubMed ID: 6972173
    [Abstract] [Full Text] [Related]

  • 27. Block of contracture in skinned frog skeletal muscle fibers by calcium antagonists.
    Fill MD, Best PM.
    J Gen Physiol; 1989 Mar 15; 93(3):429-49. PubMed ID: 2539431
    [Abstract] [Full Text] [Related]

  • 28. Effects of sulfhydryl inhibitors on depolarizations-contraction coupling in frog skeletal muscle fibers.
    Caputo C, Bolaños P, Gonzalez A.
    J Gen Physiol; 1993 Mar 15; 101(3):411-24. PubMed ID: 8473850
    [Abstract] [Full Text] [Related]

  • 29. Use-dependent block of sodium channels by verapamil in skeletal muscle during repetitive stimulation.
    Frank GB, Oz M.
    Proc West Pharmacol Soc; 1991 Mar 15; 34():409-12. PubMed ID: 1664961
    [No Abstract] [Full Text] [Related]

  • 30. Evidence for t-tubular conduction failure in frog skeletal muscle induced by elevated extracellular calcium concentration.
    Howell JN, Shankar A, Howell SG, Wei F.
    J Muscle Res Cell Motil; 1987 Jun 15; 8(3):229-41. PubMed ID: 3497173
    [Abstract] [Full Text] [Related]

  • 31. Effects of extracellular calcium and other divalent cations on mechanical response of frog skeletal muscle.
    Hatae J, Kawata H.
    Jpn J Physiol; 1988 Jun 15; 38(6):905-15. PubMed ID: 3249469
    [Abstract] [Full Text] [Related]

  • 32. Aminophylline enhances contractility of frog skeletal muscle: an effect dependent on extracellular calcium.
    Ridings JW, Barry SR, Faulkner JA.
    J Appl Physiol (1985); 1989 Aug 15; 67(2):671-6. PubMed ID: 2793668
    [Abstract] [Full Text] [Related]

  • 33. Effects of twitch train on the tetanic contractility of the frog skeletal muscle.
    Kawata H.
    Jpn J Physiol; 1983 Aug 15; 33(3):429-48. PubMed ID: 6605437
    [Abstract] [Full Text] [Related]

  • 34. Transverse tubular system depolarization reduces tetanic force in rat skeletal muscle fibers by impairing action potential repriming.
    Dutka TL, Lamb GD.
    Am J Physiol Cell Physiol; 2007 Jun 15; 292(6):C2112-21. PubMed ID: 17329405
    [Abstract] [Full Text] [Related]

  • 35. Effects of repetitive activity, ruthenium red, and elevated extracellular calcium on frog skeletal muscle: implications for t-tubule conduction.
    Howell JN, Oetliker H.
    Can J Physiol Pharmacol; 1987 Apr 15; 65(4):691-6. PubMed ID: 2440544
    [Abstract] [Full Text] [Related]

  • 36. Effects of nicardipine on frog skeletal muscle in normal and calcium-free media.
    Hatae J.
    Jpn J Physiol; 1986 Apr 15; 36(2):339-48. PubMed ID: 3488453
    [Abstract] [Full Text] [Related]

  • 37. The role of calcium ions in tetanic and post-tetanic increase of miniature end-plate potential frequency.
    Erulkar SD, Rahamimoff R.
    J Physiol; 1978 May 15; 278():501-11. PubMed ID: 209171
    [Abstract] [Full Text] [Related]

  • 38. Ketamine: effects on the mechanical properties of the frog sartorius muscle.
    Rydqvist B, Faijerson B.
    Acta Anaesthesiol Scand; 1983 Feb 15; 27(1):68-71. PubMed ID: 6601349
    [Abstract] [Full Text] [Related]

  • 39. ELECTRICAL AND MECHANICAL RESPONSES IN DEEP ABDOMINAL EXTENSOR MUSCLES OF CRAYFISH AND LOBSTER.
    ABBOTT BC, PARNAS I.
    J Gen Physiol; 1965 May 15; 48(5):919-31. PubMed ID: 14324996
    [Abstract] [Full Text] [Related]

  • 40. Skeletal muscle Ca2+ channels.
    Avila-Sakar AJ, Cota G, Gamboa-Aldeco R, Garcia J, Huerta M, Muñiz J, Stefani E.
    J Muscle Res Cell Motil; 1986 Aug 15; 7(4):291-8. PubMed ID: 2428829
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.