These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 19035613

  • 1. Investigation of biosynthetic pathways to hydroxycoumarins during post-harvest physiological deterioration in Cassava roots by using stable isotope labelling.
    Bayoumi SA, Rowan MG, Beeching JR, Blagbrough IS.
    Chembiochem; 2008 Dec 15; 9(18):3013-22. PubMed ID: 19035613
    [Abstract] [Full Text] [Related]

  • 2. Cassava: an appraisal of its phytochemistry and its biotechnological prospects.
    Blagbrough IS, Bayoumi SA, Rowan MG, Beeching JR.
    Phytochemistry; 2010 Dec 15; 71(17-18):1940-51. PubMed ID: 20943239
    [Abstract] [Full Text] [Related]

  • 3. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots.
    Bayoumi SA, Rowan MG, Beeching JR, Blagbrough IS.
    Phytochemistry; 2010 Apr 15; 71(5-6):598-604. PubMed ID: 20137795
    [Abstract] [Full Text] [Related]

  • 4. Biosynthesis of scopoletin and scopolin in cassava roots during post-harvest physiological deterioration: the E-Z-isomerisation stage.
    Bayoumi SA, Rowan MG, Blagbrough IS, Beeching JR.
    Phytochemistry; 2008 Dec 15; 69(17):2928-36. PubMed ID: 19004461
    [Abstract] [Full Text] [Related]

  • 5. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.
    Liu S, Zainuddin IM, Vanderschuren H, Doughty J, Beeching JR.
    Plant Mol Biol; 2017 May 15; 94(1-2):185-195. PubMed ID: 28315989
    [Abstract] [Full Text] [Related]

  • 6. Changes in scopoletin concentration in cassava chips from four varieties during storage.
    Gnonlonfin BG, Gbaguidi F, Gbenou JD, Sanni A, Brimer L.
    J Sci Food Agric; 2011 Oct 15; 91(13):2344-7. PubMed ID: 21604276
    [Abstract] [Full Text] [Related]

  • 7. Accumulation of coumarins in Arabidopsis thaliana.
    Kai K, Shimizu B, Mizutani M, Watanabe K, Sakata K.
    Phytochemistry; 2006 Feb 15; 67(4):379-86. PubMed ID: 16405932
    [Abstract] [Full Text] [Related]

  • 8. Knockdown of p-Coumaroyl Shikimate/Quinate 3'-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots.
    Ma Q, Xu J, Feng Y, Wu X, Lu X, Zhang P.
    Int J Mol Sci; 2022 Aug 17; 23(16):. PubMed ID: 36012496
    [Abstract] [Full Text] [Related]

  • 9. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana.
    Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimizu B.
    Plant J; 2008 Sep 17; 55(6):989-99. PubMed ID: 18547395
    [Abstract] [Full Text] [Related]

  • 10. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana.
    Siwinska J, Kadzinski L, Banasiuk R, Gwizdek-Wisniewska A, Olry A, Banecki B, Lojkowska E, Ihnatowicz A.
    BMC Plant Biol; 2014 Oct 18; 14():280. PubMed ID: 25326030
    [Abstract] [Full Text] [Related]

  • 11. Metabolite fingerprinting of cassava (Manihot esculenta Crantz) landraces assessed for post-harvest physiological deterioration (PPD).
    Lebot V, Lawac F, Muñoz-Cuervo I, Mercier PE, Legendre L.
    Food Chem; 2023 Sep 30; 421():136217. PubMed ID: 37121018
    [Abstract] [Full Text] [Related]

  • 12. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.
    Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H.
    Plant J; 2011 Jul 30; 67(1):145-56. PubMed ID: 21435052
    [Abstract] [Full Text] [Related]

  • 13. Oxidative stress responses during cassava post-harvest physiological deterioration.
    Reilly K, Gómez-Vásquez R, Buschmann H, Tohme J, Beeching JR.
    Plant Mol Biol; 2004 Nov 30; 56(4):625-41. PubMed ID: 15669147
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.
    Balyejusa Kizito E, Rönnberg-Wästljung AC, Egwang T, Gullberg U, Fregene M, Westerbergh A.
    Hereditas; 2007 Sep 30; 144(4):129-36. PubMed ID: 17850597
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Biochemical characterisation of a cassava (Manihot esculenta crantz) diversity panel for post-harvest physiological deterioration; metabolite involvement and environmental influence.
    Drapal M, Ovalle Rivera TM, Luna Meléndez JL, Perez-Fons L, Tran T, Dufour D, Becerra Lopez-Lavalle LA, Fraser PD.
    J Plant Physiol; 2024 Oct 30; 301():154303. PubMed ID: 38959754
    [Abstract] [Full Text] [Related]

  • 19. An efficient treatment for detoxification process of cassava starch by plant cell wall-degrading enzymes.
    Sornyotha S, Kyu KL, Ratanakhanokchai K.
    J Biosci Bioeng; 2010 Jan 30; 109(1):9-14. PubMed ID: 20129074
    [Abstract] [Full Text] [Related]

  • 20. Isolation and partial characterization of a root-specific promoter for stacking multiple traits into cassava (Manihot esculenta CRANTZ).
    Gbadegesin MA, Beeching JR.
    Genet Mol Res; 2011 Jun 07; 10(2):1032-41. PubMed ID: 21710453
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.