These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 19036629

  • 1. Limitations of parallel global optimization for large-scale human movement problems.
    Koh BI, Reinbolt JA, George AD, Haftka RT, Fregly BJ.
    Med Eng Phys; 2009 Jun; 31(5):515-21. PubMed ID: 19036629
    [Abstract] [Full Text] [Related]

  • 2. Evaluation of a patient-specific cost function to predict the influence of foot path on the knee adduction torque during gait.
    Fregly BJ, Reinbolt JA, Chmielewski TL.
    Comput Methods Biomech Biomed Engin; 2008 Feb; 11(1):63-71. PubMed ID: 17943485
    [Abstract] [Full Text] [Related]

  • 3. Evaluation of a particle swarm algorithm for biomechanical optimization.
    Schutte JF, Koh BI, Reinbolt JA, Haftka RT, George AD, Fregly BJ.
    J Biomech Eng; 2005 Jun; 127(3):465-74. PubMed ID: 16060353
    [Abstract] [Full Text] [Related]

  • 4. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ, Wang Q, Rahmatalla S, Swan CC, Arora JS, Abdel-Malek K, Assouline JG.
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [Abstract] [Full Text] [Related]

  • 5. Computational assessment of combinations of gait modifications for knee osteoarthritis rehabilitation.
    Fregly BJ.
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2104-6. PubMed ID: 18632374
    [Abstract] [Full Text] [Related]

  • 6. Residual Elimination Algorithm Enhancements to Improve Foot Motion Tracking During Forward Dynamic Simulations of Gait.
    Jackson JN, Hass CJ, Fregly BJ.
    J Biomech Eng; 2015 Nov; 137(11):111002. PubMed ID: 26299394
    [Abstract] [Full Text] [Related]

  • 7. Optimization-based prediction of asymmetric human gait.
    Xiang Y, Arora JS, Abdel-Malek K.
    J Biomech; 2011 Feb 24; 44(4):683-93. PubMed ID: 21092968
    [Abstract] [Full Text] [Related]

  • 8. A computational framework to predict post-treatment outcome for gait-related disorders.
    Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ.
    Med Eng Phys; 2008 May 24; 30(4):434-43. PubMed ID: 17616425
    [Abstract] [Full Text] [Related]

  • 9. Design of patient-specific gait modifications for knee osteoarthritis rehabilitation.
    Fregly BJ, Reinbolt JA, Rooney KL, Mitchell KH, Chmielewski TL.
    IEEE Trans Biomed Eng; 2007 Sep 24; 54(9):1687-95. PubMed ID: 17867361
    [Abstract] [Full Text] [Related]

  • 10. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R, Hsiao-Wecksler ET.
    J Biomech Eng; 2009 Jan 24; 131(1):011007. PubMed ID: 19045923
    [Abstract] [Full Text] [Related]

  • 11. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC, Pandy MG.
    J Biomech; 2017 Jul 05; 59():1-8. PubMed ID: 28583674
    [Abstract] [Full Text] [Related]

  • 12. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.
    Jenkyn TR, Hunt MA, Jones IC, Giffin JR, Birmingham TB.
    J Biomech; 2008 Jul 05; 41(2):276-83. PubMed ID: 18061197
    [Abstract] [Full Text] [Related]

  • 13. Predicting changes in knee adduction moment due to load-altering interventions from pressure distribution at the foot in healthy subjects.
    Erhart JC, Mündermann A, Mündermann L, Andriacchi TP.
    J Biomech; 2008 Oct 20; 41(14):2989-94. PubMed ID: 18771767
    [Abstract] [Full Text] [Related]

  • 14. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA, Haftka RT, Chmielewski TL, Fregly BJ.
    IEEE Trans Biomed Eng; 2007 May 20; 54(5):782-93. PubMed ID: 17518274
    [Abstract] [Full Text] [Related]

  • 15. Effects of foot progression angle adjustment on external knee adduction moment and knee adduction angular impulse during stair ascent and descent.
    Wang S, Chan KHC, Lam RHM, Yuen DNS, Fan CKM, Chu TTC, Baur H, Cheung RTH.
    Hum Mov Sci; 2019 Apr 20; 64():213-220. PubMed ID: 30784892
    [Abstract] [Full Text] [Related]

  • 16. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.
    Zhao D, Banks SA, Mitchell KH, D'Lima DD, Colwell CW, Fregly BJ.
    J Orthop Res; 2007 Jun 20; 25(6):789-97. PubMed ID: 17343285
    [Abstract] [Full Text] [Related]

  • 17. Individual selection of gait retraining strategies is essential to optimally reduce medial knee load during gait.
    Gerbrands TA, Pisters MF, Vanwanseele B.
    Clin Biomech (Bristol); 2014 Aug 20; 29(7):828-34. PubMed ID: 24917175
    [Abstract] [Full Text] [Related]

  • 18. Parallel global optimization with the particle swarm algorithm.
    Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD.
    Int J Numer Methods Eng; 2004 Dec 07; 61(13):2296-2315. PubMed ID: 17891226
    [Abstract] [Full Text] [Related]

  • 19. Lower limb alignment and foot angle are related to stance phase knee adduction in normal subjects: a critical analysis of the reliability of gait analysis data.
    Andrews M, Noyes FR, Hewett TE, Andriacchi TP.
    J Orthop Res; 1996 Mar 07; 14(2):289-95. PubMed ID: 8648508
    [Abstract] [Full Text] [Related]

  • 20. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC, Walter JP, Pandy MG.
    Ann Biomed Eng; 2018 Aug 07; 46(8):1216-1227. PubMed ID: 29671152
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.