These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Structure, stability, thermodynamic properties, and IR spectra of the protonated water decamer H+(H2O)10. Karthikeyan S, Kim KS. J Phys Chem A; 2009 Aug 13; 113(32):9237-42. PubMed ID: 19618910 [Abstract] [Full Text] [Related]
6. Distinctive IR signature of CO(3)(*-) and CO(3)(2-) hydrated clusters: a theoretical study. Pathak AK, Maity DK. J Phys Chem A; 2009 Dec 03; 113(48):13443-7. PubMed ID: 19886648 [Abstract] [Full Text] [Related]
7. Structure of large nitrate-water clusters at ambient temperatures: simulations with effective fragment potentials and force fields with implications for atmospheric chemistry. Miller Y, Thomas JL, Kemp DD, Finlayson-Pitts BJ, Gordon MS, Tobias DJ, Gerber RB. J Phys Chem A; 2009 Nov 19; 113(46):12805-14. PubMed ID: 19817362 [Abstract] [Full Text] [Related]
8. Structures, stability, vibration entropy and IR spectra of hydrated calcium ion clusters [Ca(H(2)O)(n)](2+) (n = 1-20, 27): a systematic investigation by density functional theory. Lei XL, Pan BC. J Phys Chem A; 2010 Jul 22; 114(28):7595-603. PubMed ID: 20586468 [Abstract] [Full Text] [Related]
9. Topology-energy relationships and lowest energy configurations for pentagonal dodecahedral (H2O)20X clusters, X = empty, H2O, NH3, H3O+: the importance of O-topology. Anick DJ. J Chem Phys; 2010 Apr 28; 132(16):164311. PubMed ID: 20441279 [Abstract] [Full Text] [Related]
10. Low-lying structures and stabilities of large water clusters: investigation based on the combination of the AMOEBA potential and generalized energy-based fragmentation approach. Yang Z, Hua S, Hua W, Li S. J Phys Chem A; 2010 Sep 02; 114(34):9253-61. PubMed ID: 20669931 [Abstract] [Full Text] [Related]
11. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters. Pathak AK, Mukherjee T, Maity DK. J Chem Phys; 2007 Jul 28; 127(4):044304. PubMed ID: 17672687 [Abstract] [Full Text] [Related]
12. The Kohn-Sham density of states and band gap of water: from small clusters to liquid water. Cabral do Couto P, Estácio SG, Costa Cabral BJ. J Chem Phys; 2005 Aug 01; 123(5):054510. PubMed ID: 16108672 [Abstract] [Full Text] [Related]
17. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum. Vendrell O, Brill M, Gatti F, Lauvergnat D, Meyer HD. J Chem Phys; 2009 Jun 21; 130(23):234305. PubMed ID: 19548725 [Abstract] [Full Text] [Related]
18. Mid-infrared characterization of the NH4 +(H2O)n clusters in the neighborhood of the n=20 "magic" number. Diken EG, Hammer NI, Johnson MA, Christie RA, Jordan KD. J Chem Phys; 2005 Oct 22; 123(16):164309. PubMed ID: 16268699 [Abstract] [Full Text] [Related]
19. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study. Pathak AK, Mukherjee T, Maity DK. Chemphyschem; 2010 Jan 18; 11(1):220-8. PubMed ID: 19943270 [Abstract] [Full Text] [Related]
20. Undissociated versus dissociated structures for water clusters and ammonia-water clusters: (H2O)n and NH3(H2O)n-1 (n = 5, 8, 9, 21). Theoretical study. Karthikeyan S, Singh NJ, Kim KS. J Phys Chem A; 2008 Jul 24; 112(29):6527-32. PubMed ID: 18578481 [Abstract] [Full Text] [Related] Page: [Next] [New Search]