These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


452 related items for PubMed ID: 19046620

  • 1. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.
    Kabdaşli I, Arslan T, Olmez-Hanci T, Arslan-Alaton I, Tünay O.
    J Hazard Mater; 2009 Jun 15; 165(1-3):838-45. PubMed ID: 19046620
    [Abstract] [Full Text] [Related]

  • 2. Organic matter and heavy metal removals from complexed metal plating effluent by the combined electrocoagulation/Fenton process.
    Kabdaşli I, Arslan T, Arslan-Alaton I, Olmez-Hanci T, Tünay O.
    Water Sci Technol; 2010 Jun 15; 61(10):2617-24. PubMed ID: 20453336
    [Abstract] [Full Text] [Related]

  • 3. Treatment of phthalic acid esters by electrocoagulation with stainless steel electrodes using dimethyl phthalate as a model compound.
    Kabdaşli I, Keleş A, Olmez-Hanci T, Tünay O, Arslan-Alaton I.
    J Hazard Mater; 2009 Nov 15; 171(1-3):932-40. PubMed ID: 19615815
    [Abstract] [Full Text] [Related]

  • 4. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.
    Arslan-Alaton I, Kabdaşli I, Vardar B, Tünay O.
    J Hazard Mater; 2009 May 30; 164(2-3):1586-94. PubMed ID: 18849115
    [Abstract] [Full Text] [Related]

  • 5. Electrochemical degradation of 1,2- dichloroethane (DCA) in a synthetic groundwater medium using stainless-steel electrodes.
    Bejankiwar R, Lalman JA, Seth R, Biswas N.
    Water Res; 2005 Nov 30; 39(19):4715-24. PubMed ID: 16289674
    [Abstract] [Full Text] [Related]

  • 6. Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes.
    Arslan-Alaton I, Kabdaşli I, Hanbaba D, Kuybu E.
    J Hazard Mater; 2008 Jan 15; 150(1):166-73. PubMed ID: 17945416
    [Abstract] [Full Text] [Related]

  • 7. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation.
    Adhoum N, Monser L, Bellakhal N, Belgaied JE.
    J Hazard Mater; 2004 Aug 30; 112(3):207-13. PubMed ID: 15302441
    [Abstract] [Full Text] [Related]

  • 8. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B, Gourich B, Sekki A, Madani K, Chibane M.
    J Hazard Mater; 2009 May 15; 164(1):215-22. PubMed ID: 18799259
    [Abstract] [Full Text] [Related]

  • 9. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.
    Yilmaz AE, Boncukcuoğlu R, Kocakerim MM.
    J Hazard Mater; 2007 Jun 01; 144(1-2):101-7. PubMed ID: 17084968
    [Abstract] [Full Text] [Related]

  • 10. Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes.
    Hanay Ö, Hasar H.
    J Hazard Mater; 2011 May 15; 189(1-2):572-6. PubMed ID: 21411225
    [Abstract] [Full Text] [Related]

  • 11. The removal of the trivalent chromium from the leather tannery wastewater: the optimisation of the electro-coagulation process parameters.
    GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ.
    Water Sci Technol; 2011 May 15; 63(3):385-94. PubMed ID: 21278458
    [Abstract] [Full Text] [Related]

  • 12. Effect of operational parameters on heavy metal removal by electrocoagulation.
    Bhagawan D, Poodari S, Pothuraju T, Srinivasulu D, Shankaraiah G, Yamuna Rani M, Himabindu V, Vidyavathi S.
    Environ Sci Pollut Res Int; 2014 Dec 15; 21(24):14166-73. PubMed ID: 25056749
    [Abstract] [Full Text] [Related]

  • 13. Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes.
    Yildiz YS.
    J Hazard Mater; 2008 May 01; 153(1-2):194-200. PubMed ID: 17875363
    [Abstract] [Full Text] [Related]

  • 14. Treatment of tannery liming drum wastewater by electrocoagulation.
    Sengil IA, Kulaç S, Ozacar M.
    J Hazard Mater; 2009 Aug 15; 167(1-3):940-6. PubMed ID: 19237242
    [Abstract] [Full Text] [Related]

  • 15. Optimization of the electrocoagulation process for the removal of copper, lead and cadmium in natural waters and simulated wastewater.
    Escobar C, Soto-Salazar C, Toral MI.
    J Environ Manage; 2006 Dec 15; 81(4):384-91. PubMed ID: 16616411
    [Abstract] [Full Text] [Related]

  • 16. Removal of COD from laundry wastewater by electrocoagulation/electroflotation.
    Wang CT, Chou WL, Kuo YM.
    J Hazard Mater; 2009 May 15; 164(1):81-6. PubMed ID: 18768252
    [Abstract] [Full Text] [Related]

  • 17. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.
    Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P.
    Water Res; 2005 Feb 15; 39(4):610-6. PubMed ID: 15707634
    [Abstract] [Full Text] [Related]

  • 18. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption.
    Chou WL, Wang CT, Huang KY.
    J Hazard Mater; 2009 Aug 15; 167(1-3):467-74. PubMed ID: 19203835
    [Abstract] [Full Text] [Related]

  • 19. Study on the treatment of photovoltaic wastewater using electrocoagulation: fluoride removal with aluminium electrodes--characteristics of products.
    Drouiche N, Aoudj S, Hecini M, Ghaffour N, Lounici H, Mameri N.
    J Hazard Mater; 2009 Sep 30; 169(1-3):65-9. PubMed ID: 19395167
    [Abstract] [Full Text] [Related]

  • 20. Removal of arsenic from wastewaters using electrocoagulation.
    Deniel R, Bindu VH, Rao AV, Anjaneyulu Y.
    J Environ Sci Eng; 2008 Oct 30; 50(4):283-8. PubMed ID: 19697763
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.