These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems. Ahmed M, Narain R. Biomaterials; 2011 Aug; 32(22):5279-90. PubMed ID: 21529936 [Abstract] [Full Text] [Related]
3. Synthesis and characterization of glycopolymer-polypeptide triblock copolymers. Dong CM, Sun XL, Faucher KM, Apkarian RP, Chaikof EL. Biomacromolecules; 2004 Aug; 5(1):224-31. PubMed ID: 14715030 [Abstract] [Full Text] [Related]
4. Synthesis of various glycopolymer architectures via RAFT polymerization: from block copolymers to stars. Bernard J, Hao X, Davis TP, Barner-Kowollik C, Stenzel MH. Biomacromolecules; 2006 Jan; 7(1):232-8. PubMed ID: 16398520 [Abstract] [Full Text] [Related]
10. Carbohydrate-based amphiphilic diblock copolymers with pyridine for the sensitive detection of protein binding. Otsuka H, Hagiwara T, Yamamoto S. J Nanosci Nanotechnol; 2014 Sep 14; 14(9):6764-73. PubMed ID: 25924328 [Abstract] [Full Text] [Related]
11. Aggregation of a double hydrophilic block glycopolymer: the effect of block polymer ratio. Oh T, Hoshino Y, Miura Y. J Mater Chem B; 2020 Nov 18; 8(44):10101-10107. PubMed ID: 33112358 [Abstract] [Full Text] [Related]
12. Let there be light: photo-cross-linked block copolymer nanoparticles. Roy D, Sumerlin BS. Macromol Rapid Commun; 2014 Jan 18; 35(2):174-179. PubMed ID: 24127389 [Abstract] [Full Text] [Related]
13. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks. Jono K, Nagao M, Oh T, Sonoda S, Hoshino Y, Miura Y. Chem Commun (Camb); 2017 Dec 19; 54(1):82-85. PubMed ID: 29211064 [Abstract] [Full Text] [Related]
14. The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems. Ahmed M, Narain R. Biomaterials; 2012 May 19; 33(15):3990-4001. PubMed ID: 22386601 [Abstract] [Full Text] [Related]
15. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Guo Q, Zhang T, An J, Wu Z, Zhao Y, Dai X, Zhang X, Li C. Biomacromolecules; 2015 Oct 12; 16(10):3345-56. PubMed ID: 26397308 [Abstract] [Full Text] [Related]
16. Role of Protecting Groups in Synthesis and Self-Assembly of Glycopolymers. Zhao Y, Zhang Y, Wang C, Chen G, Jiang M. Biomacromolecules; 2017 Feb 13; 18(2):568-575. PubMed ID: 27992198 [Abstract] [Full Text] [Related]
17. Polyisobutylene-based glycopolymers as potent inhibitors for in vitro insulin aggregation. Dey A, Haldar U, Rajasekhar T, Ghosh P, Faust R, De P. J Mater Chem B; 2022 Nov 23; 10(45):9446-9456. PubMed ID: 36345931 [Abstract] [Full Text] [Related]
18. Non-surface activity and micellization behavior of cationic amphiphilic block copolymer synthesized by reversible addition-fragmentation chain transfer process. Ghosh A, Yusa S, Matsuoka H, Saruwatari Y. Langmuir; 2011 Aug 02; 27(15):9237-44. PubMed ID: 21667918 [Abstract] [Full Text] [Related]
19. Preparation of upper critical solution temperature (UCST) responsive diblock copolymers bearing pendant ureido groups and their micelle formation behavior in water. Fujihara A, Shimada N, Maruyama A, Ishihara K, Nakai K, Yusa S. Soft Matter; 2015 Jul 14; 11(26):5204-13. PubMed ID: 25971855 [Abstract] [Full Text] [Related]
20. Amphiphilic block copolymers based on poly(2-acryloyloxyethyl phosphorylcholine) prepared via RAFT polymerisation as biocompatible nanocontainers. Stenzel MH, Barner-Kowollik C, Davis TP, Dalton HM. Macromol Biosci; 2004 Apr 19; 4(4):445-53. PubMed ID: 15468236 [Abstract] [Full Text] [Related] Page: [Next] [New Search]