These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 19054080
1. Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum. Bäumchen C, Krings E, Bringer S, Eggeling L, Sahm H. FEMS Microbiol Lett; 2009 Jan; 290(2):227-35. PubMed ID: 19054080 [Abstract] [Full Text] [Related]
2. Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Bäumchen C, Bringer-Meyer S. Appl Microbiol Biotechnol; 2007 Sep; 76(3):545-52. PubMed ID: 17503033 [Abstract] [Full Text] [Related]
3. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S. Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034 [Abstract] [Full Text] [Related]
4. D-mannitol production by resting state whole cell biotrans-formation of D-fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium. Bäumchen C, Roth AH, Biedendieck R, Malten M, Follmann M, Sahm H, Bringer-Meyer S, Jahn D. Biotechnol J; 2007 Nov; 2(11):1408-16. PubMed ID: 17619232 [Abstract] [Full Text] [Related]
5. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK. FEMS Microbiol Lett; 2005 Mar 15; 244(2):259-66. PubMed ID: 15766777 [Abstract] [Full Text] [Related]
6. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Kaup B, Bringer-Meyer S, Sahm H. Appl Microbiol Biotechnol; 2004 Apr 15; 64(3):333-9. PubMed ID: 14586579 [Abstract] [Full Text] [Related]
7. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Lindner SN, Seibold GM, Krämer R, Wendisch VF. Bioeng Bugs; 2011 Apr 15; 2(5):291-5. PubMed ID: 22008639 [Abstract] [Full Text] [Related]
8. Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation. Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L. J Bacteriol; 2006 Dec 15; 188(23):8054-61. PubMed ID: 16997948 [Abstract] [Full Text] [Related]
9. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases. Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF. Appl Environ Microbiol; 2011 Jun 15; 77(11):3571-81. PubMed ID: 21478323 [Abstract] [Full Text] [Related]
10. Characterization of the mannitol catabolic operon of Corynebacterium glutamicum. Peng X, Okai N, Vertès AA, Inatomi K, Inui M, Yukawa H. Appl Microbiol Biotechnol; 2011 Sep 15; 91(5):1375-87. PubMed ID: 21655984 [Abstract] [Full Text] [Related]
11. The Cgl1281-encoding putative transporter of the cation diffusion facilitator family is responsible for alkali-tolerance in Corynebacterium glutamicum. Takeno S, Nakamura M, Fukai R, Ohnishi J, Ikeda M. Arch Microbiol; 2008 Nov 15; 190(5):531-8. PubMed ID: 18592219 [Abstract] [Full Text] [Related]
12. The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. Hartmann M, Barsch A, Niehaus K, Pühler A, Tauch A, Kalinowski J. Arch Microbiol; 2004 Oct 15; 182(4):299-312. PubMed ID: 15480574 [Abstract] [Full Text] [Related]
13. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S. Appl Microbiol Biotechnol; 2015 Mar 15; 99(6):2741-50. PubMed ID: 25549619 [Abstract] [Full Text] [Related]
14. myo-Inositol transport by Salmonella enterica serovar Typhimurium. Kröger C, Stolz J, Fuchs TM. Microbiology (Reading); 2010 Jan 15; 156(Pt 1):128-138. PubMed ID: 19833776 [Abstract] [Full Text] [Related]
15. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Kaup B, Bringer-Meyer S, Sahm H. Commun Agric Appl Biol Sci; 2003 Jan 15; 68(2 Pt A):235-40. PubMed ID: 15296170 [Abstract] [Full Text] [Related]
16. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Sasaki M, Jojima T, Inui M, Yukawa H. Appl Microbiol Biotechnol; 2010 Apr 15; 86(4):1057-66. PubMed ID: 20012280 [Abstract] [Full Text] [Related]
17. Improving d-mannitol productivity of Escherichia coli: impact of NAD, CO2 and expression of a putative sugar permease from Leuconostoc pseudomesenteroides. Heuser F, Marin K, Kaup B, Bringer S, Sahm H. Metab Eng; 2009 May 15; 11(3):178-83. PubMed ID: 19558963 [Abstract] [Full Text] [Related]
18. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM. Appl Environ Microbiol; 2005 Oct 15; 71(10):6206-15. PubMed ID: 16204540 [Abstract] [Full Text] [Related]
19. The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum. Brüsseler C, Radek A, Tenhaef N, Krumbach K, Noack S, Marienhagen J. Bioresour Technol; 2018 Feb 15; 249():953-961. PubMed ID: 29145122 [Abstract] [Full Text] [Related]
20. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H. Appl Microbiol Biotechnol; 2009 Mar 15; 82(3):491-500. PubMed ID: 19066885 [Abstract] [Full Text] [Related] Page: [Next] [New Search]