These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
2229 related items for PubMed ID: 19054662
1. Status of biomolecular recognition using electrochemical techniques. Sadik OA, Aluoch AO, Zhou A. Biosens Bioelectron; 2009 May 15; 24(9):2749-65. PubMed ID: 19054662 [Abstract] [Full Text] [Related]
2. Electrochemical biosensors at the nanoscale. Wei D, Bailey MJ, Andrew P, Ryhänen T. Lab Chip; 2009 Aug 07; 9(15):2123-31. PubMed ID: 19606287 [Abstract] [Full Text] [Related]
3. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. Sadik OA, Zhou AL, Kikandi S, Du N, Wang Q, Varner K. J Environ Monit; 2009 Oct 07; 11(10):1782-800. PubMed ID: 19809701 [Abstract] [Full Text] [Related]
5. Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Du Y, Li B, Wei H, Wang Y, Wang E. Anal Chem; 2008 Jul 01; 80(13):5110-7. PubMed ID: 18522435 [Abstract] [Full Text] [Related]
6. Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Arya SK, Saha S, Ramirez-Vick JE, Gupta V, Bhansali S, Singh SP. Anal Chim Acta; 2012 Aug 06; 737():1-21. PubMed ID: 22769031 [Abstract] [Full Text] [Related]
7. Review: Aptamers in microfluidic chips. Xu Y, Yang X, Wang E. Anal Chim Acta; 2010 Dec 17; 683(1):12-20. PubMed ID: 21094377 [Abstract] [Full Text] [Related]
8. Electrochemical biosensing with nanoparticles. Merkoçi A. FEBS J; 2007 Jan 17; 274(2):310-6. PubMed ID: 17181547 [Abstract] [Full Text] [Related]
9. Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. He P, Oncescu V, Lee S, Choi I, Erickson D. Anal Chim Acta; 2013 Jan 08; 759():74-80. PubMed ID: 23260679 [Abstract] [Full Text] [Related]
10. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Cheng AK, Sen D, Yu HZ. Bioelectrochemistry; 2009 Nov 08; 77(1):1-12. PubMed ID: 19473883 [Abstract] [Full Text] [Related]
11. Recent advances in self-assembled monolayers based biomolecular electronic devices. Arya SK, Solanki PR, Datta M, Malhotra BD. Biosens Bioelectron; 2009 May 15; 24(9):2810-7. PubMed ID: 19339167 [Abstract] [Full Text] [Related]
12. Biosensors based on cantilevers. Alvarez M, Carrascosa LG, Zinoviev K, Plaza JA, Lechuga LM. Methods Mol Biol; 2009 May 15; 504():51-71. PubMed ID: 19159090 [Abstract] [Full Text] [Related]
13. Localized surface plasmon resonance biosensor integrated with microfluidic chip. Huang C, Bonroy K, Reekmans G, Laureyn W, Verhaegen K, De Vlaminck I, Lagae L, Borghs G. Biomed Microdevices; 2009 Aug 15; 11(4):893-901. PubMed ID: 19353272 [Abstract] [Full Text] [Related]
14. Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Liu A. Biosens Bioelectron; 2008 Oct 15; 24(2):167-77. PubMed ID: 18524566 [Abstract] [Full Text] [Related]
15. A novel electrochemical detection method for aptamer biosensors. Bang GS, Cho S, Kim BG. Biosens Bioelectron; 2005 Dec 15; 21(6):863-70. PubMed ID: 16257654 [Abstract] [Full Text] [Related]
16. Nanomaterial-assisted aptamers for optical sensing. Wang G, Wang Y, Chen L, Choo J. Biosens Bioelectron; 2010 Apr 15; 25(8):1859-68. PubMed ID: 20129770 [Abstract] [Full Text] [Related]
17. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Crevillén AG, Pumera M, González MC, Escarpa A. Lab Chip; 2009 Jan 21; 9(2):346-53. PubMed ID: 19107295 [Abstract] [Full Text] [Related]