These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


434 related items for PubMed ID: 19061127

  • 1. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations.
    Emfietzoglou D, Kostarelos K, Hadjidoukas P, Bousis C, Fotopoulos A, Pathak A, Nikjoo H.
    Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127
    [Abstract] [Full Text] [Related]

  • 2. Calculations of absorbed fractions in small water spheres for low-energy monoenergetic electrons and the Auger-emitting radionuclides (123)Ι and (125)Ι.
    Bousis C, Emfietzoglou D, Nikjoo H.
    Int J Radiat Biol; 2012 Dec; 88(12):916-21. PubMed ID: 22348619
    [Abstract] [Full Text] [Related]

  • 3. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H, Chouin N, Bernhardt P, Ferrer L, Bardiès M, Forssell-Aronsson E.
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [Abstract] [Full Text] [Related]

  • 4. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons.
    Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H.
    Phys Med Biol; 2009 Aug 21; 54(16):5023-38. PubMed ID: 19652289
    [Abstract] [Full Text] [Related]

  • 5. An analytical model for calculating microdosimetric distributions from heavy ions in nanometer site targets.
    Czopyk L, Olko P.
    Radiat Prot Dosimetry; 2006 Aug 21; 122(1-4):36-40. PubMed ID: 17351268
    [Abstract] [Full Text] [Related]

  • 6. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes.
    Stabin MG, Konijnenberg MW.
    J Nucl Med; 2000 Jan 21; 41(1):149-60. PubMed ID: 10647618
    [Abstract] [Full Text] [Related]

  • 7. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes.
    Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H.
    Phys Med Biol; 2008 Jul 21; 53(14):3739-61. PubMed ID: 18574312
    [Abstract] [Full Text] [Related]

  • 8. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F, Mairani A, Battistoni G, Cremonesi M, Di Dia A, Fassò A, Ferrari A, Ferrari M, Paganelli G, Pedroli G, Valente M.
    Med Phys; 2011 Jul 21; 38(7):3944-54. PubMed ID: 21858991
    [Abstract] [Full Text] [Related]

  • 9. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE.
    Gersh JA, Dingfelder M, Toburen LH.
    Health Phys; 2007 Jul 21; 93(1):47-59. PubMed ID: 17563492
    [Abstract] [Full Text] [Related]

  • 10. CELLDOSE: a Monte Carlo code to assess electron dose distribution--S values for 131I in spheres of various sizes.
    Champion C, Zanotti-Fregonara P, Hindié E.
    J Nucl Med; 2008 Jan 21; 49(1):151-7. PubMed ID: 18077517
    [Abstract] [Full Text] [Related]

  • 11. Monte Carlo simulation and analysis of proton energy-deposition patterns in the Bragg peak.
    González-Muñoz G, Tilly N, Fernández-Varea JM, Ahnesjö A.
    Phys Med Biol; 2008 Jun 07; 53(11):2857-75. PubMed ID: 18460751
    [Abstract] [Full Text] [Related]

  • 12. Formation of ion clusters by low-energy electrons in nanometric targets: experiment and Monte Carlo simulation.
    Bantsar A, Grosswendt B, Pszona S.
    Radiat Prot Dosimetry; 2006 Jun 07; 122(1-4):82-5. PubMed ID: 17251251
    [Abstract] [Full Text] [Related]

  • 13. Electron beam transport in heterogeneous slab media from MeV down to eV.
    Yousfi M, Leger J, Loiseau JF, Held B, Eichwald O, Defoort B, Dupillier JM.
    Radiat Prot Dosimetry; 2006 Jun 07; 122(1-4):46-52. PubMed ID: 17151011
    [Abstract] [Full Text] [Related]

  • 14. Monte-Carlo study of energy deposition by heavy charged particles in sub-cellular volumes.
    Emfietzoglou D, Papamichael G, Pathak A, Fotopoulos A, Nikjoo H.
    Radiat Prot Dosimetry; 2007 Jun 07; 126(1-4):457-62. PubMed ID: 17513851
    [Abstract] [Full Text] [Related]

  • 15. Absorbed fractions for electrons in ellipsoidal volumes.
    Amato E, Lizio D, Baldari S.
    Phys Med Biol; 2011 Jan 21; 56(2):357-65. PubMed ID: 21160113
    [Abstract] [Full Text] [Related]

  • 16. Monte Carlo track structure for radiation biology and space applications.
    Nikjoo H, Uehara S, Khvostunov IG, Cucinotta FA, Wilson WE, Goodhead DT.
    Phys Med; 2001 Jan 21; 17 Suppl 1():38-44. PubMed ID: 11770535
    [Abstract] [Full Text] [Related]

  • 17. Monte Carlo modelling of energy deposition in trabecular bone.
    Gersh JA, Dingfelder M, Toburen LH.
    Radiat Prot Dosimetry; 2006 Jan 21; 122(1-4):549-50. PubMed ID: 17132659
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Absorbed fractions for electrons and beta particles in spheres of various sizes.
    Siegel JA, Stabin MG.
    J Nucl Med; 1994 Jan 21; 35(1):152-6. PubMed ID: 8271037
    [Abstract] [Full Text] [Related]

  • 20. Electron inelastic mean free path formula and CSDA-range calculation in biological compounds for low and intermediate energies.
    Akar A, Gümüş H, Okumuşoğlu NT.
    Appl Radiat Isot; 2006 May 21; 64(5):543-50. PubMed ID: 16388951
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.