These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1042 related items for PubMed ID: 19061240

  • 1. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y, Pan Z, Zhang R, Jenkins BM.
    Biotechnol Bioeng; 2009 Apr 15; 102(6):1558-69. PubMed ID: 19061240
    [Abstract] [Full Text] [Related]

  • 2. Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass.
    Kadam KL, Rydholm EC, McMillan JD.
    Biotechnol Prog; 2004 Apr 15; 20(3):698-705. PubMed ID: 15176871
    [Abstract] [Full Text] [Related]

  • 3. Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated Creeping Wild Ryegrass.
    Zheng Y, Pan Z, Zhang R, Wang D, Jenkins B.
    Appl Biochem Biotechnol; 2008 Mar 15; 146(1-3):231-48. PubMed ID: 18421601
    [Abstract] [Full Text] [Related]

  • 4. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes.
    Andrić P, Meyer AS, Jensen PA, Dam-Johansen K.
    Biotechnol Adv; 2010 Mar 15; 28(3):308-24. PubMed ID: 20080173
    [Abstract] [Full Text] [Related]

  • 5. Modeling intrinsic kinetics of enzymatic cellulose hydrolysis.
    Peri S, Karra S, Lee YY, Karim MN.
    Biotechnol Prog; 2007 Mar 15; 23(3):626-37. PubMed ID: 17465526
    [Abstract] [Full Text] [Related]

  • 6. Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure.
    Liao W, Liu Y, Wen Z, Frear C, Chen S.
    Biotechnol Bioeng; 2008 Oct 15; 101(3):441-51. PubMed ID: 18435483
    [Abstract] [Full Text] [Related]

  • 7. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B, Wyman CE.
    Biotechnol Bioeng; 2006 Jul 05; 94(4):611-7. PubMed ID: 16673419
    [Abstract] [Full Text] [Related]

  • 8. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine.
    Tu M, Pan X, Saddler JN.
    J Agric Food Chem; 2009 Sep 09; 57(17):7771-8. PubMed ID: 19722706
    [Abstract] [Full Text] [Related]

  • 9. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model.
    O'Dwyer JP, Zhu L, Granda CB, Holtzapple MT.
    Bioresour Technol; 2007 Nov 09; 98(16):2969-77. PubMed ID: 17140790
    [Abstract] [Full Text] [Related]

  • 10. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M, Chandra RP, Saddler JN.
    Biotechnol Prog; 2007 Nov 09; 23(2):398-406. PubMed ID: 17378581
    [Abstract] [Full Text] [Related]

  • 11. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P, Meyer AS, Jensen PA, Dam-Johansen K.
    Biotechnol Adv; 2010 Nov 09; 28(3):407-25. PubMed ID: 20172020
    [Abstract] [Full Text] [Related]

  • 12. A multistage process to enhance cellobiose production from cellulosic materials.
    Vanderghem C, Boquel P, Blecker C, Paquot M.
    Appl Biochem Biotechnol; 2010 Apr 09; 160(8):2300-7. PubMed ID: 19669625
    [Abstract] [Full Text] [Related]

  • 13. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
    Medve J, Karlsson J, Lee D, Tjerneld F.
    Biotechnol Bioeng; 1998 Sep 05; 59(5):621-34. PubMed ID: 10099380
    [Abstract] [Full Text] [Related]

  • 14. Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading.
    Wang W, Kang L, Wei H, Arora R, Lee YY.
    Appl Biochem Biotechnol; 2011 Aug 05; 164(7):1139-49. PubMed ID: 21340535
    [Abstract] [Full Text] [Related]

  • 15. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.
    Smith BT, Knutsen JS, Davis RH.
    Appl Biochem Biotechnol; 2010 May 05; 161(1-8):468-82. PubMed ID: 20177821
    [Abstract] [Full Text] [Related]

  • 16. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R, Wyman CE.
    Biotechnol Bioeng; 2009 Jun 01; 103(2):252-67. PubMed ID: 19195015
    [Abstract] [Full Text] [Related]

  • 17. Kinetic studies on insoluble cellulose-cellulase system.
    Huang AA.
    Biotechnol Bioeng; 1975 Oct 01; 17(10):1421-33. PubMed ID: 1182273
    [Abstract] [Full Text] [Related]

  • 18. Use of cellulase inhibitors to produce cellobiose.
    Kim M, Day DF.
    Appl Biochem Biotechnol; 2010 Nov 01; 162(5):1379-90. PubMed ID: 20703956
    [Abstract] [Full Text] [Related]

  • 19. A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose.
    Nidetzky B, Steiner W.
    Biotechnol Bioeng; 1993 Aug 05; 42(4):469-79. PubMed ID: 18613051
    [Abstract] [Full Text] [Related]

  • 20. A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates.
    Berlin A, Maximenko V, Bura R, Kang KY, Gilkes N, Saddler J.
    Biotechnol Bioeng; 2006 Apr 05; 93(5):880-6. PubMed ID: 16345088
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 53.