These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


301 related items for PubMed ID: 19067078

  • 1. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH, Dong W, Olson ES, Merchant SN, Ravicz ME, Rosowski JJ.
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [Abstract] [Full Text] [Related]

  • 2. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT, Jenkins HA, Tollin DJ, Easter JR.
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [Abstract] [Full Text] [Related]

  • 3. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C, Rosowski JJ, Nakajima HH.
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [Abstract] [Full Text] [Related]

  • 4. Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones During Bone Conduction Stimulation.
    Stieger C, Guan X, Farahmand RB, Page BF, Merchant JP, Abur D, Nakajima HH.
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):523-539. PubMed ID: 30171386
    [Abstract] [Full Text] [Related]

  • 5. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V.
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [Abstract] [Full Text] [Related]

  • 6. Intracochlear pressure measurements during acoustic shock wave exposure.
    Greene NT, Alhussaini MA, Easter JR, Argo TF, Walilko T, Tollin DJ.
    Hear Res; 2018 Aug; 365():149-164. PubMed ID: 29843947
    [Abstract] [Full Text] [Related]

  • 7. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT, Mattingly JK, Jenkins HA, Tollin DJ, Easter JR, Cass SP.
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D, Dobrev I, Prochazka L, Thoele K, Dalbert A, Boss A, Newcomb N, Probst R, Röösli C, Sim JH, Huber A, Pfiffner F.
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [Abstract] [Full Text] [Related]

  • 10. Middle-ear pressure gain and cochlear partition differential pressure in chinchilla.
    Ravicz ME, Slama MC, Rosowski JJ.
    Hear Res; 2010 May; 263(1-2):16-25. PubMed ID: 19945521
    [Abstract] [Full Text] [Related]

  • 11. Superior Canal Dehiscence Similarly Affects Cochlear Pressures in Temporal Bones and Audiograms in Patients.
    Cheng YS, Raufer S, Guan X, Halpin CF, Lee DJ, Nakajima HH.
    Ear Hear; 2020 May; 41(4):804-810. PubMed ID: 31688316
    [Abstract] [Full Text] [Related]

  • 12. Animal model of cochlear third window in the scala vestibuli or scala tympani.
    Attias J, Preis M, Shemesh R, Hadar T, Nageris BI.
    Otol Neurotol; 2010 Aug; 31(6):985-90. PubMed ID: 20517168
    [Abstract] [Full Text] [Related]

  • 13. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH.
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Differential Intracochlear Sound Pressure Measurements in Human Temporal Bones with an Off-the-Shelf Sensor.
    Grossöhmichen M, Salcher R, Püschel K, Lenarz T, Maier H.
    Biomed Res Int; 2016 Sep; 2016():6059479. PubMed ID: 27610377
    [Abstract] [Full Text] [Related]

  • 16. Middle Ear Actuator Performance Determined From Intracochlear Pressure Measurements in a Single Cochlear Scala.
    Raufer S, Gamm UA, Grossöhmichen M, Lenarz T, Maier H.
    Otol Neurotol; 2021 Jan; 42(1):e86-e93. PubMed ID: 33044336
    [Abstract] [Full Text] [Related]

  • 17. The impact of round window reinforcement on middle and inner ear mechanics with air and bone conduction stimulation.
    Geerardyn A, Wils I, Putzeys T, Fierens G, Wouters J, Verhaert N.
    Hear Res; 2024 Sep 01; 450():109049. PubMed ID: 38850830
    [Abstract] [Full Text] [Related]

  • 18. Simultaneous measurements of ossicular velocity and intracochlear pressure leading to the cochlear input impedance in gerbil.
    de la Rochefoucauld O, Decraemer WF, Khanna SM, Olson ES.
    J Assoc Res Otolaryngol; 2008 Jun 01; 9(2):161-77. PubMed ID: 18459001
    [Abstract] [Full Text] [Related]

  • 19. Performance considerations of prosthetic actuators for round-window stimulation.
    Nakajima HH, Merchant SN, Rosowski JJ.
    Hear Res; 2010 May 01; 263(1-2):114-9. PubMed ID: 19941946
    [Abstract] [Full Text] [Related]

  • 20. Inner-ear sound pressures near the base of the cochlea in chinchilla: further investigation.
    Ravicz ME, Rosowski JJ.
    J Acoust Soc Am; 2013 Apr 01; 133(4):2208-23. PubMed ID: 23556590
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.