These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


570 related items for PubMed ID: 19067173

  • 1. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M, Greenbaum A, Gabay T, Sorkin R, David-Pur M, Ben-Jacob E, Hanein Y.
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [Abstract] [Full Text] [Related]

  • 2. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications.
    Gabriel G, Gómez R, Bongard M, Benito N, Fernández E, Villa R.
    Biosens Bioelectron; 2009 Mar 15; 24(7):1942-8. PubMed ID: 19056255
    [Abstract] [Full Text] [Related]

  • 3. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA, Martel SM, Hatsopoulos NG, Donoghue JP, Hunter IW.
    IEEE Trans Biomed Eng; 2004 Jun 15; 51(6):890-5. PubMed ID: 15188855
    [Abstract] [Full Text] [Related]

  • 4. Carbon nanotube coating improves neuronal recordings.
    Keefer EW, Botterman BR, Romero MI, Rossi AF, Gross GW.
    Nat Nanotechnol; 2008 Jul 15; 3(7):434-9. PubMed ID: 18654569
    [Abstract] [Full Text] [Related]

  • 5. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures.
    Nam Y, Chang JC, Wheeler BC, Brewer GJ.
    IEEE Trans Biomed Eng; 2004 Jan 15; 51(1):158-65. PubMed ID: 14723505
    [Abstract] [Full Text] [Related]

  • 6. Carbon nanotube-based neurochips.
    David-Pur M, Shein M, Hanein Y.
    Methods Mol Biol; 2010 Jan 15; 625():171-7. PubMed ID: 20422389
    [Abstract] [Full Text] [Related]

  • 7. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT.
    IEEE Trans Biomed Eng; 2004 Jun 15; 51(6):881-9. PubMed ID: 15188854
    [Abstract] [Full Text] [Related]

  • 8. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E, Ghirardi M, Fiumara F, Rosell X, Cabestany J.
    J Neural Eng; 2005 Jun 15; 2(2):L1-7. PubMed ID: 15928406
    [Abstract] [Full Text] [Related]

  • 9. One-to-one neuron-electrode interfacing.
    Greenbaum A, Anava S, Ayali A, Shein M, David-Pur M, Ben-Jacob E, Hanein Y.
    J Neurosci Methods; 2009 Sep 15; 182(2):219-24. PubMed ID: 19540264
    [Abstract] [Full Text] [Related]

  • 10. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD, Spence AJ, Dowell-Mesfin NM, Hussain RJ, Smith KL, Craighead HG, Isaacson MS, Shain W, Turner JN.
    IEEE Trans Biomed Eng; 2004 Sep 15; 51(9):1640-8. PubMed ID: 15376512
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A system for MEA-based multisite stimulation.
    Jimbo Y, Kasai N, Torimitsu K, Tateno T, Robinson HP.
    IEEE Trans Biomed Eng; 2003 Feb 15; 50(2):241-8. PubMed ID: 12665038
    [Abstract] [Full Text] [Related]

  • 13. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S, Rand DR, Cott DJ, Loo J, Bartic C, Eberle W, Nuttin B, Borghs G.
    ACS Nano; 2012 Jun 26; 6(6):4615-28. PubMed ID: 22551016
    [Abstract] [Full Text] [Related]

  • 14. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays.
    Krause G, Lehmann S, Lehmann M, Freund I, Schreiber E, Baumann W.
    Biosens Bioelectron; 2006 Jan 15; 21(7):1272-82. PubMed ID: 16006112
    [Abstract] [Full Text] [Related]

  • 15. A CMOS neuroelectronic interface based on two-dimensional transistor arrays with monolithically-integrated circuitry.
    Chang CH, Chang SR, Lin JS, Lee YT, Yeh SR, Chen H.
    Biosens Bioelectron; 2009 Feb 15; 24(6):1757-64. PubMed ID: 18951013
    [Abstract] [Full Text] [Related]

  • 16. A cone-shaped 3D carbon nanotube probe for neural recording.
    Su HC, Lin CM, Yen SJ, Chen YC, Chen CH, Yeh SR, Fang W, Chen H, Yao DJ, Chang YC, Yew TR.
    Biosens Bioelectron; 2010 Sep 15; 26(1):220-7. PubMed ID: 20685101
    [Abstract] [Full Text] [Related]

  • 17. Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue.
    Jang MJ, Namgung S, Hong S, Nam Y.
    Nanotechnology; 2010 Jun 11; 21(23):235102. PubMed ID: 20463384
    [Abstract] [Full Text] [Related]

  • 18. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips.
    Morin F, Nishimura N, Griscom L, Lepioufle B, Fujita H, Takamura Y, Tamiya E.
    Biosens Bioelectron; 2006 Jan 15; 21(7):1093-100. PubMed ID: 15961304
    [Abstract] [Full Text] [Related]

  • 19. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA, Leiser SC, Gerhardt GA, Barbee KA, Chapin JK.
    IEEE Trans Biomed Eng; 2004 Apr 15; 51(4):647-56. PubMed ID: 15072219
    [Abstract] [Full Text] [Related]

  • 20. Compact self-wiring in cultured neural networks.
    Sorkin R, Gabay T, Blinder P, Baranes D, Ben-Jacob E, Hanein Y.
    J Neural Eng; 2006 Jun 15; 3(2):95-101. PubMed ID: 16705265
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.