These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


197 related items for PubMed ID: 19067246

  • 1. gTME for improved xylose fermentation of Saccharomyces cerevisiae.
    Liu H, Yan M, Lai C, Xu L, Ouyang P.
    Appl Biochem Biotechnol; 2010 Jan; 160(2):574-82. PubMed ID: 19067246
    [Abstract] [Full Text] [Related]

  • 2. [Effects of mutational sptl5 gene to xylose utilization of Saccharomyces cerevisiae].
    Liu H, Tang W, Lai C, Yan M, Xu L, Ouyang P.
    Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):875-9. PubMed ID: 19777815
    [Abstract] [Full Text] [Related]

  • 3. Engineering yeast transcription machinery for improved ethanol tolerance and production.
    Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G.
    Science; 2006 Dec 08; 314(5805):1565-8. PubMed ID: 17158319
    [Abstract] [Full Text] [Related]

  • 4. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate.
    Liu H, Liu K, Yan M, Xu L, Ouyang P.
    Appl Biochem Biotechnol; 2011 Aug 08; 164(7):1150-9. PubMed ID: 21365181
    [Abstract] [Full Text] [Related]

  • 5. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W.
    Biotechnol Bioeng; 2011 Aug 08; 108(8):1776-87. PubMed ID: 21437883
    [Abstract] [Full Text] [Related]

  • 6. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Bôas SG, Nielsen J, Olsson L.
    Appl Microbiol Biotechnol; 2002 Aug 08; 59(4-5):436-42. PubMed ID: 12172606
    [Abstract] [Full Text] [Related]

  • 7. Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions.
    Gao C, Wang Z, Liang Q, Qi Q.
    Appl Microbiol Biotechnol; 2010 Aug 08; 87(5):1821-7. PubMed ID: 20461507
    [Abstract] [Full Text] [Related]

  • 8. [gTME for construction of recombinant yeast co-fermenting xylose and glucose].
    Liu H, Xu L, Yan M, Lai C, Ouyang P.
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun 08; 24(6):1010-5. PubMed ID: 18807984
    [Abstract] [Full Text] [Related]

  • 9. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT.
    FEMS Yeast Res; 2005 Feb 08; 5(4-5):399-409. PubMed ID: 15691745
    [Abstract] [Full Text] [Related]

  • 10. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C, Haack MB, Olsson L.
    Appl Microbiol Biotechnol; 2004 Feb 08; 63(5):578-83. PubMed ID: 12925863
    [Abstract] [Full Text] [Related]

  • 11. Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast.
    Govindaswamy S, Vane LM.
    Bioresour Technol; 2007 Feb 08; 98(3):677-85. PubMed ID: 16563746
    [Abstract] [Full Text] [Related]

  • 12. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS.
    J Biotechnol; 2010 Nov 08; 150(3):404-7. PubMed ID: 20933550
    [Abstract] [Full Text] [Related]

  • 13. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.
    Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A.
    Appl Microbiol Biotechnol; 2009 Apr 08; 82(6):1037-47. PubMed ID: 19125247
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M, Johansson B, Jensen PR, Hahn-Hägerdal B, Gorwa-Grauslund MF.
    Yeast; 2003 Nov 08; 20(15):1263-72. PubMed ID: 14618564
    [Abstract] [Full Text] [Related]

  • 16. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A.
    Govindaswamy S, Vane LM.
    Bioresour Technol; 2010 Feb 08; 101(4):1277-84. PubMed ID: 19811910
    [Abstract] [Full Text] [Related]

  • 17. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M, Winkler AA, van Dijken JP, Pronk JT.
    FEMS Yeast Res; 2004 Mar 08; 4(6):655-64. PubMed ID: 15040955
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast.
    Sedlak M, Ho NW.
    Yeast; 2004 Jun 08; 21(8):671-84. PubMed ID: 15197732
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.