These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins. Battistuzzi G, Bellei M, Borsari M, Canters GW, de Waal E, Jeuken LJ, Ranieri A, Sola M. Biochemistry; 2003 Aug 05; 42(30):9214-20. PubMed ID: 12885256 [Abstract] [Full Text] [Related]
23. New molecular packing in a crystal of pseudoazurin from Alcaligenes faecalis: a double-helical arrangement of blue copper. Fukuda Y, Mizohata E, Inoue T. Acta Crystallogr F Struct Biol Commun; 2017 Mar 01; 73(Pt 3):159-166. PubMed ID: 28291752 [Abstract] [Full Text] [Related]
26. Bidirectional catalysis by copper-containing nitrite reductase. Wijma HJ, Canters GW, de Vries S, Verbeet MP. Biochemistry; 2004 Aug 17; 43(32):10467-74. PubMed ID: 15301545 [Abstract] [Full Text] [Related]
27. Disulfide bond isomerization in basic pancreatic trypsin inhibitor: multisite chemical exchange quantified by CPMG relaxation dispersion and chemical shift modeling. Grey MJ, Wang C, Palmer AG. J Am Chem Soc; 2003 Nov 26; 125(47):14324-35. PubMed ID: 14624581 [Abstract] [Full Text] [Related]
28. Molecular dynamics of amicyanin reveals a conserved dynamical core for blue copper proteins. Rizzuti B, Sportelli L, Guzzi R. Proteins; 2009 Mar 26; 74(4):961-71. PubMed ID: 18767164 [Abstract] [Full Text] [Related]
29. Interpretation of the temperature-dependent color of blue copper protein mutants. Comba P, Müller V, Remenyi R. J Inorg Biochem; 2004 May 26; 98(5):896-902. PubMed ID: 15134935 [Abstract] [Full Text] [Related]
31. The pH-dependent redox inactivation of amicyanin from Paracoccus versutus as studied by rapid protein-film voltammetry. Jeuken LC, Camba R, Armstrong FA, Canters GW. J Biol Inorg Chem; 2002 Jan 26; 7(1-2):94-100. PubMed ID: 11862545 [Abstract] [Full Text] [Related]
32. Density functional study of EPR parameters and spin-density distribution of azurin and other blue copper proteins. Remenyi C, Reviakine R, Kaupp M. J Phys Chem B; 2007 Jul 19; 111(28):8290-304. PubMed ID: 17592871 [Abstract] [Full Text] [Related]
33. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin. Paraskevopoulos K, Sundararajan M, Surendran R, Hough MA, Eady RR, Hillier IH, Hasnain SS. Dalton Trans; 2006 Jul 07; (25):3067-76. PubMed ID: 16786065 [Abstract] [Full Text] [Related]
38. The alkaline transition of blue copper proteins, Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin. Sakurai T. FEBS Lett; 2006 Mar 20; 580(7):1729-32. PubMed ID: 16500649 [Abstract] [Full Text] [Related]
39. Protonation of type-1 Cu bound histidines: a quantum chemical study. Su P, Li H. Inorg Chem; 2010 Jan 18; 49(2):435-44. PubMed ID: 20000723 [Abstract] [Full Text] [Related]
40. Effect of histidine 6 protonation on the active site structure and electron-transfer capabilities of pseudoazurin from Achromobacter cycloclastes. Sato K, Dennison C. Biochemistry; 2002 Jan 08; 41(1):120-30. PubMed ID: 11772009 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]