These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 19074610
1. Application of recognition of individual genes-fluorescence in situ hybridization (RING-FISH) to detect nitrite reductase genes (nirK) of denitrifiers in pure cultures and environmental samples. Pratscher J, Stichternoth C, Fichtl K, Schleifer KH, Braker G. Appl Environ Microbiol; 2009 Feb; 75(3):802-10. PubMed ID: 19074610 [Abstract] [Full Text] [Related]
2. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Braker G, Zhou J, Wu L, Devol AH, Tiedje JM. Appl Environ Microbiol; 2000 May; 66(5):2096-104. PubMed ID: 10788387 [Abstract] [Full Text] [Related]
3. Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers. Falk S, Liu B, Braker G. Syst Appl Microbiol; 2010 Oct; 33(6):337-47. PubMed ID: 20675088 [Abstract] [Full Text] [Related]
4. Diversity of nitrite reductase genes in "Candidatus Accumulibacter phosphatis"-dominated cultures enriched by flow-cytometric sorting. Miyauchi R, Oki K, Aoi Y, Tsuneda S. Appl Environ Microbiol; 2007 Aug; 73(16):5331-7. PubMed ID: 17513594 [Abstract] [Full Text] [Related]
5. The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N, De Vos P. Environ Microbiol; 2006 Nov; 8(11):2012-21. PubMed ID: 17014499 [Abstract] [Full Text] [Related]
6. Identification of denitrifying bacteria diversity in an activated sludge system by using nitrite reductase genes. You SJ. Biotechnol Lett; 2005 Oct; 27(19):1477-82. PubMed ID: 16231219 [Abstract] [Full Text] [Related]
7. Analysis of nitrite reductase (nirK and nirS) genes and cultivation reveal depauperate community of denitrifying bacteria in the Black Sea suboxic zone. Oakley BB, Francis CA, Roberts KJ, Fuchsman CA, Srinivasan S, Staley JT. Environ Microbiol; 2007 Jan; 9(1):118-30. PubMed ID: 17227417 [Abstract] [Full Text] [Related]
8. Spatiotemporal Characterization of San Francisco Bay Denitrifying Communities: a Comparison of nirK and nirS Diversity and Abundance. Lee JA, Francis CA. Microb Ecol; 2017 Feb; 73(2):271-284. PubMed ID: 27709247 [Abstract] [Full Text] [Related]
9. Identification of nitrite-reducing bacteria using sequential mRNA fluorescence in situ hybridization and fluorescence-assisted cell sorting. Mota CR, So MJ, de los Reyes FL. Microb Ecol; 2012 Jul; 64(1):256-67. PubMed ID: 22370876 [Abstract] [Full Text] [Related]
10. Highly diverse nirK genes comprise two major clades that harbour ammonium-producing denitrifiers. Helen D, Kim H, Tytgat B, Anne W. BMC Genomics; 2016 Feb 29; 17():155. PubMed ID: 26923558 [Abstract] [Full Text] [Related]
11. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. Appl Environ Microbiol; 2006 Sep 29; 72(9):5957-62. PubMed ID: 16957216 [Abstract] [Full Text] [Related]
12. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils. Priemé A, Braker G, Tiedje JM. Appl Environ Microbiol; 2002 Apr 29; 68(4):1893-900. PubMed ID: 11916709 [Abstract] [Full Text] [Related]
13. Presence of Cu-Type (NirK) and cd1-Type (NirS) Nitrite Reductase Genes in the Denitrifying Bacterium Bradyrhizobium nitroreducens sp. nov. Jang J, Ashida N, Kai A, Isobe K, Nishizawa T, Otsuka S, Yokota A, Senoo K, Ishii S. Microbes Environ; 2018 Sep 29; 33(3):326-331. PubMed ID: 30158366 [Abstract] [Full Text] [Related]
14. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. Jones CM, Hallin S. ISME J; 2010 May 29; 4(5):633-41. PubMed ID: 20090785 [Abstract] [Full Text] [Related]
15. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities. Li W, Shan XY, Wang ZY, Lin XY, Li CX, Cai CY, Abbas G, Zhang M, Shen LD, Hu ZQ, Zhao HP, Zheng P. Water Res; 2016 Jan 01; 88():758-765. PubMed ID: 26595097 [Abstract] [Full Text] [Related]
16. Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-type (NirS) nitrite reductase genes under denitrifying conditions. Sánchez C, Minamisawa K. FEMS Microbiol Lett; 2018 Mar 01; 365(5):. PubMed ID: 29361081 [Abstract] [Full Text] [Related]
17. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Chen Z, Luo X, Hu R, Wu M, Wu J, Wei W. Microb Ecol; 2010 Nov 01; 60(4):850-61. PubMed ID: 20563573 [Abstract] [Full Text] [Related]
18. Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems. Dandie CE, Burton DL, Zebarth BJ, Trevors JT, Goyer C. Syst Appl Microbiol; 2007 Mar 01; 30(2):128-38. PubMed ID: 16793234 [Abstract] [Full Text] [Related]
19. [Effects of PAHs Pollution on the Community Structure of Denitrifiers in a Typical Oilfield]. Yao YH, Wang MX, Zuo XH, Li ZL, Luo F, Zhou ZF. Huan Jing Ke Xue; 2016 Dec 08; 37(12):4750-4759. PubMed ID: 29965317 [Abstract] [Full Text] [Related]
20. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. Wolsing M, Priemé A. FEMS Microbiol Ecol; 2004 May 01; 48(2):261-71. PubMed ID: 19712409 [Abstract] [Full Text] [Related] Page: [Next] [New Search]