These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
358 related items for PubMed ID: 19081595
21. Subsurface interactions of Fe(II) with humic acid or landfill leachate do not control subsequent iron(III) (hydr)oxide production at the surface. Jackson A, Gaffney JW, Boult S. Environ Sci Technol; 2012 Jul 17; 46(14):7543-50. PubMed ID: 22712619 [Abstract] [Full Text] [Related]
22. Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH. Dao YH, De Laat J. Water Res; 2011 May 17; 45(11):3309-17. PubMed ID: 21514949 [Abstract] [Full Text] [Related]
23. Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts. Chaliha S, Bhattacharyya KG. J Hazard Mater; 2008 Feb 11; 150(3):728-36. PubMed ID: 17574332 [Abstract] [Full Text] [Related]
24. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides. Frierdich AJ, Catalano JG. Environ Sci Technol; 2012 Oct 16; 46(20):11070-7. PubMed ID: 22970760 [Abstract] [Full Text] [Related]
26. Effects of NO2(-) and NO3(-) on the Fe(III)EDTA reduction in a chemical absorption-biological reduction integrated NO(x) removal system. Zhang SH, Cai LL, Liu Y, Shi Y, Li W. Appl Microbiol Biotechnol; 2009 Mar 15; 82(3):557-63. PubMed ID: 19137285 [Abstract] [Full Text] [Related]
27. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis. Matthies R, Aplin AC, Horrocks BR, Mudashiru LK. J Environ Monit; 2012 Apr 15; 14(4):1174-81. PubMed ID: 22370608 [Abstract] [Full Text] [Related]
28. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant. Woodward JJ, Chang MM, Martin NI, Marletta MA. J Am Chem Soc; 2009 Jan 14; 131(1):297-305. PubMed ID: 19128180 [Abstract] [Full Text] [Related]
29. Nitrite reduction and formation of corrosion coatings in zerovalent iron systems. Huang YH, Zhang TC. Chemosphere; 2006 Aug 14; 64(6):937-43. PubMed ID: 16488465 [Abstract] [Full Text] [Related]
30. The role of iron in hexavalent chromium reduction by municipal landfill leachate. Li Y, Low GK, Scott JA, Amal R. J Hazard Mater; 2009 Jan 30; 161(2-3):657-62. PubMed ID: 18486329 [Abstract] [Full Text] [Related]
31. Color removal of distillery wastewater by ozonation in the absence and presence of immobilized iron oxide catalyst. Sreethawong T, Chavadej S. J Hazard Mater; 2008 Jul 15; 155(3):486-93. PubMed ID: 18179871 [Abstract] [Full Text] [Related]
32. Enhancement of iron(II)-dependent reduction of nitrite to nitric oxide by thiocyanate and accumulation of iron(II)/thiocyanate/nitric oxide complex under conditions simulating the mixture of saliva and gastric juice. Takahama U, Hirota S. Chem Res Toxicol; 2012 Jan 13; 25(1):207-15. PubMed ID: 22145785 [Abstract] [Full Text] [Related]
33. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments. Shao H, Butler EC. Chemosphere; 2007 Aug 13; 68(10):1807-13. PubMed ID: 17537483 [Abstract] [Full Text] [Related]
34. Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. Petersen MG, Dewilde S, Fago A. J Inorg Biochem; 2008 Sep 13; 102(9):1777-82. PubMed ID: 18599123 [Abstract] [Full Text] [Related]
35. Heterogeneous reduction of PuO₂ with Fe(II): importance of the Fe(III) reaction product. Felmy AR, Moore DA, Rosso KM, Qafoku O, Rai D, Buck EC, Ilton ES. Environ Sci Technol; 2011 May 01; 45(9):3952-8. PubMed ID: 21469710 [Abstract] [Full Text] [Related]
36. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model. Bae Y, Kim D, Cho HH, Singhal N, Park JW. Water Res; 2012 Dec 01; 46(19):6391-8. PubMed ID: 23040563 [Abstract] [Full Text] [Related]
37. Influence of electron donor/acceptor concentrations on hydrous ferric oxide (HFO) bioreduction. Fredrickson JK, Kota S, Kukkadapu RK, Liu C, Zachara JM. Biodegradation; 2003 Apr 01; 14(2):91-103. PubMed ID: 12877465 [Abstract] [Full Text] [Related]
38. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. Chen SS, Cheng CY, Li CW, Chai PH, Chang YM. J Hazard Mater; 2007 Apr 02; 142(1-2):362-7. PubMed ID: 16987595 [Abstract] [Full Text] [Related]
39. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study. Zhang TT, Liu YD, Zhong RG. J Inorg Biochem; 2015 Sep 02; 150():126-32. PubMed ID: 26112152 [Abstract] [Full Text] [Related]
40. Oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol by means of Fe(III)-homogeneous photocatalysis and algal toxicity assessment of the treated solutions. Andreozzi R, Di Somma I, Marotta R, Pinto G, Pollio A, Spasiano D. Water Res; 2011 Feb 02; 45(5):2038-48. PubMed ID: 21251692 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]