These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
281 related items for PubMed ID: 1908354
1. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Cole WC, McPherson CD, Sontag D. Circ Res; 1991 Sep; 69(3):571-81. PubMed ID: 1908354 [Abstract] [Full Text] [Related]
5. Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium. Nakaya H, Takeda Y, Tohse N, Kanno M. Br J Pharmacol; 1991 May; 103(1):1019-26. PubMed ID: 1908730 [Abstract] [Full Text] [Related]
6. Proarrhythmic effects of pinacidil are partially mediated through enhancement of catecholamine release in isolated perfused guinea-pig hearts. D'Alonzo AJ, Zhu JL, Darbenzio RB, Dorso CR, Grover GJ. J Mol Cell Cardiol; 1998 Feb; 30(2):415-23. PubMed ID: 9515018 [Abstract] [Full Text] [Related]
11. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo. Xu J, Wang L, Hurt CM, Pelleg A. Circulation; 1994 Mar; 89(3):1209-16. PubMed ID: 8124809 [Abstract] [Full Text] [Related]
12. Adenosine triphosphate-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. Heart function studies in nonfibrillating isolated hearts. Tosaki A, Hellegouarch A. J Am Coll Cardiol; 1994 Feb; 23(2):487-96. PubMed ID: 8294705 [Abstract] [Full Text] [Related]
13. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle. Venkatesh N, Stuart JS, Lamp ST, Alexander LD, Weiss JN. Circ Res; 1992 Dec; 71(6):1324-33. PubMed ID: 1423930 [Abstract] [Full Text] [Related]
14. Effect of potassium on the action of the KATP modulators cromakalim, pinacidil, or glibenclamide on arrhythmias in isolated perfused rat heart subjected to regional ischaemia. D'Alonzo AJ, Darbenzio RB, Hess TA, Sewter JC, Sleph PG, Grover GJ. Cardiovasc Res; 1994 Jun; 28(6):881-7. PubMed ID: 7923295 [Abstract] [Full Text] [Related]
16. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Venkatesh N, Lamp ST, Weiss JN. Circ Res; 1991 Sep; 69(3):623-37. PubMed ID: 1908355 [Abstract] [Full Text] [Related]
17. Actions of pinacidil at a reduced potassium concentration: a direct cardiac effect possibly involving the ATP-dependent potassium channel. Chi L, Black SC, Kuo PI, Fagbemi SO, Lucchesi BR. J Cardiovasc Pharmacol; 1993 Feb; 21(2):179-90. PubMed ID: 7679150 [Abstract] [Full Text] [Related]
18. Differential class III and glibenclamide effects on action potential duration in guinea-pig papillary muscle during normoxia and hypoxia/ischaemia. MacKenzie I, Saville VL, Waterfall JF. Br J Pharmacol; 1993 Oct; 110(2):531-8. PubMed ID: 8242227 [Abstract] [Full Text] [Related]
19. Anti-ischemic effects of the potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. Grover GJ, McCullough JR, Henry DE, Conder ML, Sleph PG. J Pharmacol Exp Ther; 1989 Oct; 251(1):98-104. PubMed ID: 2507775 [Abstract] [Full Text] [Related]
20. Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated potassium current promote phase 2 reentry? Di Diego JM, Antzelevitch C. Circulation; 1993 Sep; 88(3):1177-89. PubMed ID: 7689041 [Abstract] [Full Text] [Related] Page: [Next] [New Search]