These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 19085837

  • 1. Intracellular signalling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes.
    Matsakas A, Patel K.
    Histol Histopathol; 2009 Feb; 24(2):209-22. PubMed ID: 19085837
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation.
    Atherton PJ, Babraj J, Smith K, Singh J, Rennie MJ, Wackerhage H.
    FASEB J; 2005 May; 19(7):786-8. PubMed ID: 15716393
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Interaction between the AMP-activated protein kinase and mTOR signaling pathways.
    Kimball SR.
    Med Sci Sports Exerc; 2006 Nov; 38(11):1958-64. PubMed ID: 17095930
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle.
    Bolster DR, Kubica N, Crozier SJ, Williamson DL, Farrell PA, Kimball SR, Jefferson LS.
    J Physiol; 2003 Nov 15; 553(Pt 1):213-20. PubMed ID: 12937293
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR.
    Williamson DL, Bolster DR, Kimball SR, Jefferson LS.
    Am J Physiol Endocrinol Metab; 2006 Jul 15; 291(1):E80-9. PubMed ID: 16760336
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle.
    Apró W, Wang L, Pontén M, Blomstrand E, Sahlin K.
    Am J Physiol Endocrinol Metab; 2013 Jul 01; 305(1):E22-32. PubMed ID: 23632629
    [Abstract] [Full Text] [Related]

  • 15. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle.
    Ryder JW, Chibalin AV, Zierath JR.
    Acta Physiol Scand; 2001 Mar 01; 171(3):249-57. PubMed ID: 11412137
    [Abstract] [Full Text] [Related]

  • 16. Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men.
    Hulmi JJ, Tannerstedt J, Selänne H, Kainulainen H, Kovanen V, Mero AA.
    J Appl Physiol (1985); 2009 May 01; 106(5):1720-9. PubMed ID: 19299575
    [Abstract] [Full Text] [Related]

  • 17. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis.
    Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB.
    J Appl Physiol (1985); 2007 Sep 01; 103(3):903-10. PubMed ID: 17569770
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle.
    Mascher H, Tannerstedt J, Brink-Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E.
    Am J Physiol Endocrinol Metab; 2008 Jan 01; 294(1):E43-51. PubMed ID: 17971512
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.