These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
346 related items for PubMed ID: 19103314
1. Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Foley S, Quinn S, Jones G. Bone; 2009 May; 44(5):752-7. PubMed ID: 19103314 [Abstract] [Full Text] [Related]
2. High bone density in young Hutterite children. Wey CL, Beare T, Biskeborn K, Binkley T, Arneson L, Specker B. Bone; 2009 Mar; 44(3):454-60. PubMed ID: 19095089 [Abstract] [Full Text] [Related]
3. Tracking of Areal Bone Mineral Density From Age Eight to Young Adulthood and Factors Associated With Deviation From Tracking: A 17-Year Prospective Cohort Study. Yang Y, Wu F, Winzenberg T, Jones G. J Bone Miner Res; 2018 May; 33(5):832-839. PubMed ID: 29232481 [Abstract] [Full Text] [Related]
4. Body composition and bone mass in survivors of childhood cancer. Muszynska-Roslan K, Konstantynowicz J, Krawczuk-Rybak M, Protas P. Pediatr Blood Cancer; 2007 Feb; 48(2):200-4. PubMed ID: 16602116 [Abstract] [Full Text] [Related]
5. Subjective and objective measures of physical activity in relationship to bone mineral content during late childhood: the Iowa Bone Development Study. Janz KF, Medema-Johnson HC, Letuchy EM, Burns TL, Gilmore JM, Torner JC, Willing M, Levy SM. Br J Sports Med; 2008 Aug; 42(8):658-63. PubMed ID: 18603581 [Abstract] [Full Text] [Related]
6. Relationships of acylated and des-acyl ghrelin levels to bone mineralization in obese children and adolescents. Pacifico L, Anania C, Poggiogalle E, Osborn JF, Prossomariti G, Martino F, Chiesa C. Bone; 2009 Aug; 45(2):274-9. PubMed ID: 19393347 [Abstract] [Full Text] [Related]
7. Relation between body composition and age in healthy Japanese subjects. Ito H, Ohshima A, Ohto N, Ogasawara M, Tsuzuki M, Takao K, Hijii C, Tanaka H, Nishioka K. Eur J Clin Nutr; 2001 Jun; 55(6):462-70. PubMed ID: 11423923 [Abstract] [Full Text] [Related]
8. Current physical activity is related to bone mineral density in males but not in females. Högström M, Nordström A, Alfredson H, Lorentzon R, Thorsen K, Nordström P. Int J Sports Med; 2007 May; 28(5):431-6. PubMed ID: 17111323 [Abstract] [Full Text] [Related]
9. Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys. Ginty F, Rennie KL, Mills L, Stear S, Jones S, Prentice A. Bone; 2005 Jan; 36(1):101-10. PubMed ID: 15664008 [Abstract] [Full Text] [Related]
10. Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Horlick M, Wang J, Pierson RN, Thornton JC. Pediatrics; 2004 Sep; 114(3):e337-45. PubMed ID: 15342895 [Abstract] [Full Text] [Related]
11. Development and reproducibility of the bone loading history questionnaire. Dolan SH, Williams DP, Ainsworth BE, Shaw JM. Med Sci Sports Exerc; 2006 Jun; 38(6):1121-31. PubMed ID: 16775555 [Abstract] [Full Text] [Related]
12. [Bone mineral and body composition analysis of whole body in 292 normal subjects assessed by dual X-ray absorptiometry]. Qin MW, Yu W, Xu L, Tian JP, Xing XP, Meng XW, Yan HZ, Ge QS. Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):66-9. PubMed ID: 12905612 [Abstract] [Full Text] [Related]
13. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. J Bone Miner Res; 2000 Oct; 15(10):2011-8. PubMed ID: 11028455 [Abstract] [Full Text] [Related]
14. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Calbet JA. Br J Sports Med; 2005 Sep; 39(9):611-6. PubMed ID: 16118297 [Abstract] [Full Text] [Related]
15. Age- and gender-related changes in body composition in Japanese subjects. Tsunenari T, Tsutsumi M, Ohno K, Yamamoto Y, Kawakatsu M, Shimogaki K, Negishi H, Sugimoto T, Fukase M, Fujita T. J Bone Miner Res; 1993 Apr; 8(4):397-402. PubMed ID: 8475789 [Abstract] [Full Text] [Related]
16. Self-reported lifetime physical activity and areal bone mineral density in healthy postmenopausal women: the importance of teenage activity. Rideout CA, McKay HA, Barr SI. Calcif Tissue Int; 2006 Oct; 79(4):214-22. PubMed ID: 17033722 [Abstract] [Full Text] [Related]
17. Change in lean body mass is a major determinant of change in areal bone mineral density of the proximal femur: a 12-year observational study. Liu-Ambrose T, Kravetsky L, Bailey D, Sherar L, Mundt C, Baxter-Jones A, Khan KM, McKay HA. Calcif Tissue Int; 2006 Sep; 79(3):145-51. PubMed ID: 16969588 [Abstract] [Full Text] [Related]
18. Relationships of appendicular LMI and total body LMI to bone mass and physical activity levels in a birth cohort of New Zealand five-year olds. Goulding A, Taylor RW, Grant AM, Jones S, Taylor BJ, Williams SM. Bone; 2009 Sep; 45(3):455-9. PubMed ID: 19450717 [Abstract] [Full Text] [Related]
19. Changes in body composition as determinants of longitudinal changes in bone mineral measures in 8 to 26-year-old female twins. Young D, Hopper JL, Macinnis RJ, Nowson CA, Hoang NH, Wark JD. Osteoporos Int; 2001 Sep; 12(6):506-15. PubMed ID: 11446568 [Abstract] [Full Text] [Related]
20. Bone changes in adolescent girls with anorexia nervosa. Stone M, Briody J, Kohn MR, Clarke S, Madden S, Cowell CT. J Adolesc Health; 2006 Dec; 39(6):835-41. PubMed ID: 17116513 [Abstract] [Full Text] [Related] Page: [Next] [New Search]