These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


108 related items for PubMed ID: 191061

  • 21. Determinants of substrate specificity for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H, West AH, Cook PF.
    Biochemistry; 2007 Jun 26; 46(25):7625-36. PubMed ID: 17542618
    [Abstract] [Full Text] [Related]

  • 22. Single-electron transfer from NADH analogues to singlet oxygen.
    Peters G, Rodgers MA.
    Biochim Biophys Acta; 1981 Aug 12; 637(1):43-52. PubMed ID: 7284356
    [Abstract] [Full Text] [Related]

  • 23. Potential coenzyme inhibitors. V. The synthesis and some properties of 4-methylnicotinamide adenine dinucleotide.
    Jarman M, Searle F.
    Biochem Pharmacol; 1972 Feb 15; 21(4):455-64. PubMed ID: 4335405
    [No Abstract] [Full Text] [Related]

  • 24. Nucleotide modification, a radical mechanism of oxidative toxicity.
    Bernofsky C, O'Dea SW.
    Free Radic Res Commun; 1986 Feb 15; 2(3):129-36. PubMed ID: 2850269
    [Abstract] [Full Text] [Related]

  • 25. Characterization of the structure and reactions of free radicals from serotonin and related indoles.
    Perez-Reyes E, Mason RP.
    J Biol Chem; 1981 Mar 10; 256(5):2427-32. PubMed ID: 6257719
    [Abstract] [Full Text] [Related]

  • 26. One-electron reactions in biochemical systems as studied by pulse radiolysis. I. Nicotinamide-adenine dinucleotide and related compounds.
    Land EJ, Swallow AJ.
    Biochim Biophys Acta; 1968 Oct 01; 162(3):327-37. PubMed ID: 4300592
    [No Abstract] [Full Text] [Related]

  • 27. Free radical production from the aerobic oxidation of reduced pyridine nucleotides catalysed by phenazine derivatives.
    Davis G, Thornalley PJ.
    Biochim Biophys Acta; 1983 Sep 30; 724(3):456-64. PubMed ID: 6311259
    [Abstract] [Full Text] [Related]

  • 28. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors.
    Migaud ME, Pederick RL, Bailey VC, Potter BV.
    Biochemistry; 1999 Jul 13; 38(28):9105-14. PubMed ID: 10413485
    [Abstract] [Full Text] [Related]

  • 29. Non-enzymic interactions of nicotinamide adenine dinucleotide, of some of its synthetic analogues and other compounds with orthophosphate.
    Ungar F, Ungar B, Alivisatos SG, Mosnaim AD, Wolf ME.
    Res Commun Chem Pathol Pharmacol; 1979 Aug 13; 25(2):395-8. PubMed ID: 40296
    [Abstract] [Full Text] [Related]

  • 30. Reaction of uracil and thymine derivatives with sodium bisulfite. Studies on the mechanism and reduction of the adduct.
    Shapiro R, Welcher M, Nelson V, Di Fate V.
    Biochim Biophys Acta; 1976 Feb 18; 425(1):115-24. PubMed ID: 2323
    [Abstract] [Full Text] [Related]

  • 31. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites.
    Khan SR, Morgan AG, Michail K, Srivastava N, Whittal RM, Aljuhani N, Siraki AG.
    Biochem Pharmacol; 2016 Apr 15; 106():46-55. PubMed ID: 26867495
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K, Ma Q, Lu AY, Yang CS.
    Arch Biochem Biophys; 1995 Nov 10; 323(2):265-73. PubMed ID: 7487087
    [Abstract] [Full Text] [Related]

  • 34. [Transfer electron and hydrogen atom in model and enzymatic reactions of NAD and NADP].
    Iasnikov OO, Grishin OM, Ponomarenko SP, Pavlova OK, Uzieenko AB.
    Ukr Biokhim Zh; 1977 Nov 10; 49(4):43-7. PubMed ID: 19863
    [Abstract] [Full Text] [Related]

  • 35. The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart.
    Rydström J, Montelius J, Bäckström D, Ernster L.
    Biochim Biophys Acta; 1978 Mar 13; 501(3):370-80. PubMed ID: 24468
    [Abstract] [Full Text] [Related]

  • 36. Evidence for the multiplicity of products from acid-treated reduced nicotinamide adenine dinucleotide (NADH).
    Bernofsky C.
    Physiol Chem Phys; 1978 Mar 13; 10(3):193-9. PubMed ID: 32564
    [Abstract] [Full Text] [Related]

  • 37. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S, Kotake Y, Humphries KM.
    Biochemistry; 2011 Dec 20; 50(50):10792-803. PubMed ID: 22091587
    [Abstract] [Full Text] [Related]

  • 38. Use of the sulphite adduct of nicotinamide-adenine dinucleotide to study ionizations and the kinetics of lactate dehydrogenase and malate dehydrogenase.
    Parker DM, Lodola A, Holbrook JJ.
    Biochem J; 1978 Sep 01; 173(3):959-67. PubMed ID: 30452
    [Abstract] [Full Text] [Related]

  • 39. The metabolism of 17 beta-estradiol by lactoperoxidase: a possible source of oxidative stress in breast cancer.
    Sipe HJ, Jordan SJ, Hanna PM, Mason RP.
    Carcinogenesis; 1994 Nov 01; 15(11):2637-43. PubMed ID: 7955118
    [Abstract] [Full Text] [Related]

  • 40. Chlorine dioxide oxidation of dihydronicotinamide adenine dinucleotide (NADH).
    Bakhmutova-Albert EV, Margerum DW, Auer JG, Applegate BM.
    Inorg Chem; 2008 Mar 17; 47(6):2205-11. PubMed ID: 18278862
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.