These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 19107533

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Indian hedgehog: its roles and regulation in endochondral bone development.
    Lai LP, Mitchell J.
    J Cell Biochem; 2005 Dec 15; 96(6):1163-73. PubMed ID: 16187314
    [Abstract] [Full Text] [Related]

  • 3. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone?
    Brouwers JE, van Donkelaar CC, Sengers BG, Huiskes R.
    J Biomech; 2006 Dec 15; 39(15):2774-82. PubMed ID: 16298375
    [Abstract] [Full Text] [Related]

  • 4. The PTHrP-Ihh feedback loop in the embryonic growth plate allows PTHrP to control hypertrophy and Ihh to regulate proliferation.
    van Donkelaar CC, Huiskes R.
    Biomech Model Mechanobiol; 2007 Jan 15; 6(1-2):55-62. PubMed ID: 16691414
    [Abstract] [Full Text] [Related]

  • 5. PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms.
    Mau E, Whetstone H, Yu C, Hopyan S, Wunder JS, Alman BA.
    Dev Biol; 2007 May 01; 305(1):28-39. PubMed ID: 17328886
    [Abstract] [Full Text] [Related]

  • 6. Integration of signaling pathways regulating chondrocyte differentiation during endochondral bone formation.
    Adams SL, Cohen AJ, Lassová L.
    J Cell Physiol; 2007 Dec 01; 213(3):635-41. PubMed ID: 17886256
    [Abstract] [Full Text] [Related]

  • 7. Molecular mechanisms of endochondral bone development.
    Provot S, Schipani E.
    Biochem Biophys Res Commun; 2005 Mar 18; 328(3):658-65. PubMed ID: 15694399
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Indian and sonic hedgehogs regulate synchondrosis growth plate and cranial base development and function.
    Young B, Minugh-Purvis N, Shimo T, St-Jacques B, Iwamoto M, Enomoto-Iwamoto M, Koyama E, Pacifici M.
    Dev Biol; 2006 Nov 01; 299(1):272-82. PubMed ID: 16935278
    [Abstract] [Full Text] [Related]

  • 10. Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
    Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M.
    Int J Biochem Cell Biol; 2008 Nov 01; 40(1):46-62. PubMed ID: 17659995
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. [Molecular mechanism in the differentiation of chondrocytes].
    Kitoh H, Ishiguro N.
    Clin Calcium; 2007 Apr 01; 17(4):493-8. PubMed ID: 17404477
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A mathematical model of signalling molecule-mediated processes during regeneration of osteochondral defects after chondrocyte implantation.
    Campbell K, Naire S, Kuiper JH.
    J Theor Biol; 2024 Sep 07; 592():111874. PubMed ID: 38908475
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Cellular scale model of growth plate: An in silico model of chondrocyte hypertrophy.
    Castro-Abril HA, Guevara JM, Moncayo MA, Shefelbine SJ, Barrera LA, Garzón-Alvarado DA.
    J Theor Biol; 2017 Sep 07; 428():87-97. PubMed ID: 28526527
    [Abstract] [Full Text] [Related]

  • 18. Mechanobiological modeling of endochondral ossification: an experimental and computational analysis.
    Vaca-González JJ, Moncayo-Donoso M, Guevara JM, Hata Y, Shefelbine SJ, Garzón-Alvarado DA.
    Biomech Model Mechanobiol; 2018 Jun 07; 17(3):853-875. PubMed ID: 29322335
    [Abstract] [Full Text] [Related]

  • 19. A mechanobiological model of epiphysis structures formation.
    Peinado Cortés LM, Vanegas Acosta JC, Garzón Alvarado DA.
    J Theor Biol; 2011 Oct 21; 287():13-25. PubMed ID: 21810429
    [Abstract] [Full Text] [Related]

  • 20. In vitro regulation of proliferation and differentiation within a postnatal growth plate of the cranial base by parathyroid hormone-related peptide (PTHrP).
    Wealthall RJ.
    J Cell Physiol; 2009 Jun 21; 219(3):688-97. PubMed ID: 19229881
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.