These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
516 related items for PubMed ID: 19108976
1. Short-echo-time magnetic resonance spectroscopy of single voxel with arbitrary shape in the living human brain using segmented two-dimensional selective radiofrequency excitations based on a blipped-planar trajectory. Weber-Fahr W, Busch MG, Finsterbusch J. Magn Reson Imaging; 2009 Jun; 27(5):664-71. PubMed ID: 19108976 [Abstract] [Full Text] [Related]
2. Spatially 2D-selective RF excitations using the PROPELLER trajectory: basic principles and application to MR spectroscopy of irregularly shaped single voxel. Busch MG, Finsterbusch J. Magn Reson Med; 2011 Nov; 66(5):1218-25. PubMed ID: 21465546 [Abstract] [Full Text] [Related]
3. Fast-spin-echo imaging of inner fields-of-view with 2D-selective RF excitations. Finsterbusch J. J Magn Reson Imaging; 2010 Jun; 31(6):1530-7. PubMed ID: 20512911 [Abstract] [Full Text] [Related]
4. Segmented 2D-selective RF excitations with weighted averaging and flip angle adaptation for MR spectroscopy of irregularly shaped voxel. Finsterbusch J, Busch MG. Magn Reson Med; 2011 Aug; 66(2):333-40. PubMed ID: 21360589 [Abstract] [Full Text] [Related]
5. Hadamard-encoding combined with two-dimensional-selective radiofrequency excitations for flexible and efficient acquisitions of multiple voxels in MR spectroscopy. Busch MG, Finsterbusch J. J Magn Reson Imaging; 2012 Apr; 35(4):976-83. PubMed ID: 22180189 [Abstract] [Full Text] [Related]
6. Eliminating side excitations in PROPELLER-based 2D-selective RF excitations. Busch MG, Finsterbusch J. Magn Reson Med; 2012 Nov; 68(5):1383-9. PubMed ID: 22294489 [Abstract] [Full Text] [Related]
7. Gradient-echo line scan imaging using 2D-selective RF excitation. Finsterbusch J, Frahm J. J Magn Reson; 2000 Nov; 147(1):17-25. PubMed ID: 11042043 [Abstract] [Full Text] [Related]
8. Fast 3D echo planar SSFP-based 1H spectroscopic imaging: demonstration on the rat brain in vivo. Althaus M, Dreher W, Geppert C, Leibfritz D. Magn Reson Imaging; 2006 Jun; 24(5):549-55. PubMed ID: 16735175 [Abstract] [Full Text] [Related]
9. Surface-based functional magnetic resonance imaging analysis of partial brain echo planar imaging data at 1.5 T. Jo HJ, Lee JM, Kim JH, Choi CH, Kang DH, Kwon JS, Kim SI. Magn Reson Imaging; 2009 Jun; 27(5):691-700. PubMed ID: 19036544 [Abstract] [Full Text] [Related]
10. Improving the performance of diffusion-weighted inner field-of-view echo-planar imaging based on 2D-selective radiofrequency excitations by tilting the excitation plane. Finsterbusch J. J Magn Reson Imaging; 2012 Apr; 35(4):984-92. PubMed ID: 22170770 [Abstract] [Full Text] [Related]
11. Implementation of three-dimensional wavelet encoding spectroscopic imaging: in vivo application and method comparison. Young R, Serrai H. Magn Reson Med; 2009 Jan; 61(1):6-15. PubMed ID: 19097215 [Abstract] [Full Text] [Related]
12. Signal scaling improves the signal-to-noise ratio of measurements with segmented 2D-selective radiofrequency excitations. Finsterbusch J, Busch MG, Larson PE. Magn Reson Med; 2013 Dec; 70(6):1491-9. PubMed ID: 23440633 [Abstract] [Full Text] [Related]
13. Spectrum separation resolves partial-volume effect of MRSI as demonstrated on brain tumor scans. Su Y, Thakur SB, Karimi S, Du S, Sajda P, Huang W, Parra LC. NMR Biomed; 2008 Nov; 21(10):1030-42. PubMed ID: 18759383 [Abstract] [Full Text] [Related]
14. BSLIM: spectral localization by imaging with explicit B0 field inhomogeneity compensation. Khalidov I, Van De Ville D, Jacob M, Lazeyras F, Unser M. IEEE Trans Med Imaging; 2007 Jul; 26(7):990-1000. PubMed ID: 17649912 [Abstract] [Full Text] [Related]
15. A 3D trajectory for undersampling k-space in MRSI applications. Uribe S, Guesalaga A, Mir R, Guarini M, Irarrázaval P. Magn Reson Imaging; 2007 Apr; 25(3):350-8. PubMed ID: 17371724 [Abstract] [Full Text] [Related]
16. Strategies for inner volume 3D fast spin echo magnetic resonance imaging using nonselective refocusing radio frequency pulses. Mitsouras D, Mulkern RV, Rybicki FJ. Med Phys; 2006 Jan; 33(1):173-86. PubMed ID: 16485424 [Abstract] [Full Text] [Related]
17. Validation of fast MR thermometry at 1.5 T with gradient-echo echo planar imaging sequences: phantom and clinical feasibility studies. Cernicanu A, Lepetit-Coiffe M, Roland J, Becker CD, Terraz S. NMR Biomed; 2008 Oct; 21(8):849-58. PubMed ID: 18574794 [Abstract] [Full Text] [Related]
18. Limits on the accuracy of 3-D thickness measurement in magnetic resonance images--effects of voxel anisotropy. Sato Y, Tanaka H, Nishii T, Nakanishi K, Sugano N, Kubota T, Nakamura H, Yoshikawa H, Ochi T, Tamura S. IEEE Trans Med Imaging; 2003 Sep; 22(9):1076-88. PubMed ID: 12956263 [Abstract] [Full Text] [Related]
20. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss. Henning A, Fuchs A, Murdoch JB, Boesiger P. NMR Biomed; 2009 Aug; 22(7):683-96. PubMed ID: 19259944 [Abstract] [Full Text] [Related] Page: [Next] [New Search]