These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1227 related items for PubMed ID: 19113096
1. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics. Buendía GM, Rikvold PA. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096 [Abstract] [Full Text] [Related]
2. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Korniss G, White CJ, Rikvold PA, Novotny MA. Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327 [Abstract] [Full Text] [Related]
3. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Korniss G, Rikvold PA, Novotny MA. Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056127. PubMed ID: 12513576 [Abstract] [Full Text] [Related]
4. Microstructure and velocity of field-driven Ising interfaces moving under a soft stochastic dynamic. Rikvold PA, Kolesik M. Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066113. PubMed ID: 16241310 [Abstract] [Full Text] [Related]
5. Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field. Fujisaka H, Tutu H, Rikvold PA. Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036109. PubMed ID: 11308711 [Abstract] [Full Text] [Related]
6. Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model. Robb DT, Rikvold PA, Berger A, Novotny MA. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021124. PubMed ID: 17930023 [Abstract] [Full Text] [Related]
11. Dynamic phase transition of the Blume-Capel model in an oscillating magnetic field. Vatansever E, Fytas NG. Phys Rev E; 2018 Jan; 97(1-1):012122. PubMed ID: 29448362 [Abstract] [Full Text] [Related]
14. Nonequilibrium phase transitions and stationary-state solutions of a three-dimensional random-field Ising model under a time-dependent periodic external field. Yüksel Y, Vatansever E, Akıncı U, Polat H. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051123. PubMed ID: 23004719 [Abstract] [Full Text] [Related]
15. Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the effective-field theory and Glauber-type stochastic dynamics approach. Ertaş M, Deviren B, Keskin M. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051110. PubMed ID: 23214741 [Abstract] [Full Text] [Related]
16. Monte Carlo study of the two-dimensional kinetic Blume-Capel model in a quenched random crystal field. Vasilopoulos A, Vatansever ZD, Vatansever E, Fytas NG. Phys Rev E; 2021 Aug; 104(2-1):024108. PubMed ID: 34525625 [Abstract] [Full Text] [Related]