These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1116 related items for PubMed ID: 19128960
1. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S. Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [Abstract] [Full Text] [Related]
6. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S. J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783 [Abstract] [Full Text] [Related]
7. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH, Kodaki T, Park YC, Seo JH. J Biotechnol; 2012 Apr 30; 158(4):184-91. PubMed ID: 21699927 [Abstract] [Full Text] [Related]
8. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR, Kwee NR, Kim H, Jin YS. FEMS Yeast Res; 2013 May 30; 13(3):312-21. PubMed ID: 23398717 [Abstract] [Full Text] [Related]
9. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF. Yeast; 2005 Apr 15; 22(5):359-68. PubMed ID: 15806613 [Abstract] [Full Text] [Related]
10. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U. Biotechnol Bioeng; 2004 Jul 05; 87(1):90-8. PubMed ID: 15211492 [Abstract] [Full Text] [Related]
11. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A. J Biotechnol; 2012 Apr 30; 158(4):203-10. PubMed ID: 21741417 [Abstract] [Full Text] [Related]
12. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. Matsushika A, Sawayama S. J Biosci Bioeng; 2008 Sep 30; 106(3):306-9. PubMed ID: 18930011 [Abstract] [Full Text] [Related]
13. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K. J Biotechnol; 2007 Jun 30; 130(3):316-9. PubMed ID: 17555838 [Abstract] [Full Text] [Related]
14. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Hou J, Shen Y, Li XP, Bao XM. Lett Appl Microbiol; 2007 Aug 30; 45(2):184-9. PubMed ID: 17651216 [Abstract] [Full Text] [Related]
15. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains. Kato H, Suyama H, Yamada R, Hasunuma T, Kondo A. Appl Microbiol Biotechnol; 2012 Jun 30; 94(6):1585-92. PubMed ID: 22406859 [Abstract] [Full Text] [Related]
17. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B, Gorwa-Grauslund MF. Yeast; 2004 Jan 30; 21(2):141-50. PubMed ID: 14755639 [Abstract] [Full Text] [Related]
18. Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing β-xylosidase. Fujii T, Yu G, Matsushika A, Kurita A, Yano S, Murakami K, Sawayama S. Biosci Biotechnol Biochem; 2011 Jan 30; 75(6):1140-6. PubMed ID: 21670522 [Abstract] [Full Text] [Related]
19. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. Khattab SM, Saimura M, Kodaki T. J Biotechnol; 2013 Jun 10; 165(3-4):153-6. PubMed ID: 23578809 [Abstract] [Full Text] [Related]