These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


258 related items for PubMed ID: 19130024

  • 1. Immune-mediated CNS damage.
    Kierdorf K, Wang Y, Neumann H.
    Results Probl Cell Differ; 2010; 51():173-96. PubMed ID: 19130024
    [Abstract] [Full Text] [Related]

  • 2. Neuronal injury in chronic CNS inflammation.
    Zindler E, Zipp F.
    Best Pract Res Clin Anaesthesiol; 2010 Dec; 24(4):551-62. PubMed ID: 21619866
    [Abstract] [Full Text] [Related]

  • 3. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury.
    Lehnardt S.
    Glia; 2010 Feb; 58(3):253-63. PubMed ID: 19705460
    [Abstract] [Full Text] [Related]

  • 4. Experimental allergic encephalomyelitis. T cell trafficking to the central nervous system in a resistant Thy-1 congenic mouse strain.
    Skundric DS, Huston K, Shaw M, Tse HY, Raine CS.
    Lab Invest; 1994 Nov; 71(5):671-9. PubMed ID: 7526038
    [Abstract] [Full Text] [Related]

  • 5. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis.
    Miller SD, McMahon EJ, Schreiner B, Bailey SL.
    Ann N Y Acad Sci; 2007 Apr; 1103():179-91. PubMed ID: 17376826
    [Abstract] [Full Text] [Related]

  • 6. Role of glial cells in innate immunity and their role in CNS demyelination.
    Sriram S.
    J Neuroimmunol; 2011 Oct 28; 239(1-2):13-20. PubMed ID: 21907419
    [Abstract] [Full Text] [Related]

  • 7. Macrophages and neurodegeneration.
    Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD.
    Brain Res Brain Res Rev; 2005 Apr 28; 48(2):185-95. PubMed ID: 15850657
    [Abstract] [Full Text] [Related]

  • 8. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice.
    Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T.
    J Immunol; 1998 Oct 01; 161(7):3767-75. PubMed ID: 9759903
    [Abstract] [Full Text] [Related]

  • 9. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis.
    Benveniste EN.
    J Mol Med (Berl); 1997 Mar 01; 75(3):165-73. PubMed ID: 9106073
    [Abstract] [Full Text] [Related]

  • 10. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease.
    Raivich G, Banati R.
    Brain Res Brain Res Rev; 2004 Nov 01; 46(3):261-81. PubMed ID: 15571769
    [Abstract] [Full Text] [Related]

  • 11. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines.
    Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T.
    J Immunol; 1995 Jan 15; 154(2):944-53. PubMed ID: 7814894
    [Abstract] [Full Text] [Related]

  • 12. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.
    Murphy AC, Lalor SJ, Lynch MA, Mills KH.
    Brain Behav Immun; 2010 May 15; 24(4):641-51. PubMed ID: 20138983
    [Abstract] [Full Text] [Related]

  • 13. [Activation of T cells in experimental autoimmune encephalomyelitis and multiple sclerosis].
    Rodríguez-Rodríguez Y, Suárez-Luis I.
    Rev Neurol; 2010 May 15; 36(7):649-52. PubMed ID: 12666047
    [Abstract] [Full Text] [Related]

  • 14. Microglia and multiple sclerosis.
    Jack C, Ruffini F, Bar-Or A, Antel JP.
    J Neurosci Res; 2005 Aug 01; 81(3):363-73. PubMed ID: 15948188
    [Abstract] [Full Text] [Related]

  • 15. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis.
    Begolka WS, Vanderlugt CL, Rahbe SM, Miller SD.
    J Immunol; 1998 Oct 15; 161(8):4437-46. PubMed ID: 9780223
    [Abstract] [Full Text] [Related]

  • 16. Immunology of multiple sclerosis.
    Williams KC, Ulvestad E, Hickey WF.
    Clin Neurosci; 1994 Oct 15; 2(3-4):229-45. PubMed ID: 7749893
    [Abstract] [Full Text] [Related]

  • 17. Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models.
    Lassmann H.
    Exp Neurol; 2010 Sep 15; 225(1):2-8. PubMed ID: 19840788
    [Abstract] [Full Text] [Related]

  • 18. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis.
    El Behi M, Dubucquoi S, Lefranc D, Zéphir H, De Seze J, Vermersch P, Prin L.
    Immunol Lett; 2005 Jan 15; 96(1):11-26. PubMed ID: 15585303
    [Abstract] [Full Text] [Related]

  • 19. Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis.
    Matejuk A, Bakke AC, Hopke C, Dwyer J, Vandenbark AA, Offner H.
    J Neurosci Res; 2004 Jul 01; 77(1):119-26. PubMed ID: 15197745
    [Abstract] [Full Text] [Related]

  • 20. New insights into adaptive immunity in chronic neuroinflammation.
    Siffrin V, Brandt AU, Herz J, Zipp F.
    Adv Immunol; 2007 Jul 01; 96():1-40. PubMed ID: 17981203
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.