These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


329 related items for PubMed ID: 19131313

  • 41. Targeted mutations of genes reveal important roles in palatal development in mice.
    Ma L, Shi B, Zheng Q.
    Ann Plast Surg; 2015 Feb; 74(2):263-8. PubMed ID: 23851369
    [Abstract] [Full Text] [Related]

  • 42. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.
    Lane J, Yumoto K, Azhar M, Ninomiya-Tsuji J, Inagaki M, Hu Y, Deng CX, Kim J, Mishina Y, Kaartinen V.
    Dev Biol; 2015 Feb 15; 398(2):231-41. PubMed ID: 25523394
    [Abstract] [Full Text] [Related]

  • 43. Ultrastructural observations on the development of triamcinolone-induced cleft palate in hamsters.
    Shah RM.
    Invest Cell Pathol; 1980 Feb 15; 3(3):281-94. PubMed ID: 7429884
    [Abstract] [Full Text] [Related]

  • 44. Experimental induction of palate shelf elevation in glutamate decarboxylase 67-deficient mice with cleft palate due to vertically oriented palatal shelf.
    Iseki S, Ishii-Suzuki M, Tsunekawa N, Yamada Y, Eto K, Obata K.
    Birth Defects Res A Clin Mol Teratol; 2007 Oct 15; 79(10):688-95. PubMed ID: 17849453
    [Abstract] [Full Text] [Related]

  • 45. Vitamin B12 counteracts dexamethasone-induced proliferation and apoptosis during key periods of palatogenesis in mice.
    He W, Meng T, Lu SJ, Zheng Q, Li CH, Wu M, Shi B.
    Ann Plast Surg; 2010 Apr 15; 64(4):466-70. PubMed ID: 20224330
    [Abstract] [Full Text] [Related]

  • 46. Facial clefting in Tp63 deficient mice results from altered Bmp4, Fgf8 and Shh signaling.
    Thomason HA, Dixon MJ, Dixon J.
    Dev Biol; 2008 Sep 01; 321(1):273-82. PubMed ID: 18634775
    [Abstract] [Full Text] [Related]

  • 47. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development.
    Ohki S, Oka K, Ogata K, Okuhara S, Rikitake M, Toda-Nakamura M, Tamura S, Ozaki M, Iseki S, Sakai T.
    Front Physiol; 2020 Sep 01; 11():532. PubMed ID: 32581832
    [Abstract] [Full Text] [Related]

  • 48. A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling.
    Ding H, Wu X, Boström H, Kim I, Wong N, Tsoi B, O'Rourke M, Koh GY, Soriano P, Betsholtz C, Hart TC, Marazita ML, Field LL, Tam PP, Nagy A.
    Nat Genet; 2004 Oct 01; 36(10):1111-6. PubMed ID: 15361870
    [Abstract] [Full Text] [Related]

  • 49. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme.
    Nik AM, Johansson JA, Ghiami M, Reyahi A, Carlsson P.
    Dev Biol; 2016 Jul 01; 415(1):14-23. PubMed ID: 27180663
    [Abstract] [Full Text] [Related]

  • 50. The genetics of isolated orofacial clefts: from genotypes to subphenotypes.
    Jugessur A, Farlie PG, Kilpatrick N.
    Oral Dis; 2009 Oct 01; 15(7):437-53. PubMed ID: 19583827
    [Abstract] [Full Text] [Related]

  • 51. Fate-mapping of the epithelial seam during palatal fusion rules out epithelial-mesenchymal transformation.
    Vaziri Sani F, Hallberg K, Harfe BD, McMahon AP, Linde A, Gritli-Linde A.
    Dev Biol; 2005 Sep 15; 285(2):490-5. PubMed ID: 16109396
    [Abstract] [Full Text] [Related]

  • 52. Transforming growth factor-beta 3 is required for secondary palate fusion.
    Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T.
    Nat Genet; 1995 Dec 15; 11(4):409-14. PubMed ID: 7493021
    [Abstract] [Full Text] [Related]

  • 53. Regional heterogeneity in the developing palate: morphological and molecular evidence for normal and abnormal palatogenesis.
    Okano J, Suzuki S, Shiota K.
    Congenit Anom (Kyoto); 2006 Jun 15; 46(2):49-54. PubMed ID: 16732762
    [Abstract] [Full Text] [Related]

  • 54. The Function and Regulatory Network of Pax9 Gene in Palate Development.
    Li R, Chen Z, Yu Q, Weng M, Chen Z.
    J Dent Res; 2019 Mar 15; 98(3):277-287. PubMed ID: 30583699
    [Abstract] [Full Text] [Related]

  • 55. Mouse genetic models of cleft lip with or without cleft palate.
    Juriloff DM, Harris MJ.
    Birth Defects Res A Clin Mol Teratol; 2008 Feb 15; 82(2):63-77. PubMed ID: 18181213
    [Abstract] [Full Text] [Related]

  • 56. Cleft lip and cleft palate in Esrp1 knockout mice is associated with alterations in epithelial-mesenchymal crosstalk.
    Lee S, Sears MJ, Zhang Z, Li H, Salhab I, Krebs P, Xing Y, Nah HD, Williams T, Carstens RP.
    Development; 2020 Apr 30; 147(21):. PubMed ID: 32253237
    [Abstract] [Full Text] [Related]

  • 57. Amniotic fluid induces rapid epithelialization in the experimentally ruptured fetal mouse palate--implications for fetal wound healing.
    Takigawa T, Shiota K.
    Int J Dev Biol; 2007 Apr 30; 51(1):67-77. PubMed ID: 17183466
    [Abstract] [Full Text] [Related]

  • 58. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero.
    Jia S, Zhou J, Fanelli C, Wee Y, Bonds J, Schneider P, Mues G, D'Souza RN.
    Development; 2017 Oct 15; 144(20):3819-3828. PubMed ID: 28893947
    [Abstract] [Full Text] [Related]

  • 59. Dexamethasone alters epithelium proliferation and survival and suppresses Wnt/β-catenin signaling in developing cleft palate.
    Hu X, Gao JH, Liao YJ, Tang SJ, Lu F.
    Food Chem Toxicol; 2013 Jun 15; 56():67-74. PubMed ID: 23416130
    [Abstract] [Full Text] [Related]

  • 60. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice.
    Noda K, Mishina Y, Komatsu Y.
    Dev Biol; 2016 Jul 15; 415(2):306-313. PubMed ID: 26116174
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.