These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences. Wenger OS. Acc Chem Res; 2011 Jan 18; 44(1):25-35. PubMed ID: 20945886 [Abstract] [Full Text] [Related]
6. Hole tunneling and hopping in a Ru(bpy)3(2+)-phenothiazine dyad with a bridge derived from oligo-p-phenylene. Walther ME, Wenger OS. Inorg Chem; 2011 Nov 07; 50(21):10901-7. PubMed ID: 21958107 [Abstract] [Full Text] [Related]
7. Photoinduced electron transfer in covalent ruthenium-anthraquinone dyads: relative importance of driving-force, solvent polarity, and donor-bridge energy gap. Hankache J, Wenger OS. Phys Chem Chem Phys; 2012 Feb 28; 14(8):2685-92. PubMed ID: 22258761 [Abstract] [Full Text] [Related]
8. Electron transfer across modular oligo-p-phenylene bridges in Ru(bpy)2(bpy-ph(n)-DQ)4+ (n = 1-5) dyads. Unusual effects of bridge elongation. Indelli MT, Orlandi M, Chiorboli C, Ravaglia M, Scandola F, Lafolet F, Welter S, De Cola L. J Phys Chem A; 2012 Jan 12; 116(1):119-31. PubMed ID: 22103466 [Abstract] [Full Text] [Related]
9. Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor-bridge-acceptor systems. Pettersson K, Wiberg J, Ljungdahl T, Mårtensson J, Albinsson B. J Phys Chem A; 2006 Jan 12; 110(1):319-26. PubMed ID: 16392871 [Abstract] [Full Text] [Related]
11. Platinum chromophore-based systems for photoinduced charge separation: a molecular design approach for artificial photosynthesis. Chakraborty S, Wadas TJ, Hester H, Schmehl R, Eisenberg R. Inorg Chem; 2005 Oct 03; 44(20):6865-78. PubMed ID: 16180842 [Abstract] [Full Text] [Related]
12. Dependence of reaction rates for bidirectional PCET on the electron donor-electron acceptor distance in phenol-Ru(2,2'-bipyridine)₃²⁺ dyads. Chen J, Kuss-Petermann M, Wenger OS. J Phys Chem B; 2015 Feb 12; 119(6):2263-73. PubMed ID: 25078952 [Abstract] [Full Text] [Related]
13. Ruthenium-phenothiazine electron transfer dyad with a photoswitchable dithienylethene bridge: flash-quench studies with methylviologen. He B, Wenger OS. Inorg Chem; 2012 Apr 02; 51(7):4335-42. PubMed ID: 22435739 [Abstract] [Full Text] [Related]
14. Energy transfer from rhenium(I) complexes to covalently attached anthracenes and phenanthrenes. Walther ME, Wenger OS. Dalton Trans; 2008 Nov 28; (44):6311-8. PubMed ID: 18985265 [Abstract] [Full Text] [Related]
15. Photoinduced electron transfer in linear triarylamine-photosensitizer-anthraquinone triads with ruthenium(II), osmium(II), and iridium(III). Hankache J, Niemi M, Lemmetyinen H, Wenger OS. Inorg Chem; 2012 Jun 04; 51(11):6333-44. PubMed ID: 22621319 [Abstract] [Full Text] [Related]
16. Dynamics of photoinduced electron-transfer processes in fullerene-based dyads: effects of varying the donor strength. Thomas KG, Biju V, Kamat PV, George MV, Guldi DM. Chemphyschem; 2003 Dec 15; 4(12):1299-307. PubMed ID: 14714377 [Abstract] [Full Text] [Related]
18. Tetramethoxybenzene is a Good Building Block for Molecular Wires: Insights from Photoinduced Electron Transfer. Heinz LG, Yushchenko O, Neuburger M, Vauthey E, Wenger OS. J Phys Chem A; 2015 Jun 04; 119(22):5676-84. PubMed ID: 25974891 [Abstract] [Full Text] [Related]