These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


403 related items for PubMed ID: 19140784

  • 1. Attomolar protein detection using in-hole surface plasmon resonance.
    Ferreira J, Santos MJ, Rahman MM, Brolo AG, Gordon R, Sinton D, Girotto EM.
    J Am Chem Soc; 2009 Jan 21; 131(2):436-7. PubMed ID: 19140784
    [Abstract] [Full Text] [Related]

  • 2. Biosensing by optical waveguide spectroscopy based on localized surface plasmon resonance of gold nanoparticles used as a probe or as a label.
    Kajiura M, Nakanishi T, Iida H, Takada H, Osaka T.
    J Colloid Interface Sci; 2009 Jul 01; 335(1):140-5. PubMed ID: 19395015
    [Abstract] [Full Text] [Related]

  • 3. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface.
    Jung J, Na K, Lee J, Kim KW, Hyun J.
    Anal Chim Acta; 2009 Sep 28; 651(1):91-7. PubMed ID: 19733741
    [Abstract] [Full Text] [Related]

  • 4. Detection in near-field domain of biomolecules adsorbed on a single metallic nanoparticle.
    Barbillon G, Bijeon JL, Bouillard JS, Plain J, Lamy De la Chapelle M, Adam PM, Royer P.
    J Microsc; 2008 Feb 28; 229(Pt 2):270-4. PubMed ID: 18304084
    [Abstract] [Full Text] [Related]

  • 5. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation.
    Lindquist NC, Lesuffleur A, Im H, Oh SH.
    Lab Chip; 2009 Feb 07; 9(3):382-7. PubMed ID: 19156286
    [Abstract] [Full Text] [Related]

  • 6. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM, Chen S, Chilkoti A.
    Anal Chem; 2007 Jul 15; 79(14):5278-83. PubMed ID: 17567106
    [Abstract] [Full Text] [Related]

  • 7. Label-free biosensing based on single gold nanostars as plasmonic transducers.
    Dondapati SK, Sau TK, Hrelescu C, Klar TA, Stefani FD, Feldmann J.
    ACS Nano; 2010 Nov 23; 4(11):6318-22. PubMed ID: 20942444
    [Abstract] [Full Text] [Related]

  • 8. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X, Tamada K, Baba A, Knoll W, Hara M.
    J Phys Chem B; 2006 Aug 17; 110(32):15755-62. PubMed ID: 16898722
    [Abstract] [Full Text] [Related]

  • 9. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C, Bonroy K, Reekmans G, Laureyn W, Verhaegen K, De Vlaminck I, Lagae L, Borghs G.
    Biomed Microdevices; 2009 Aug 17; 11(4):893-901. PubMed ID: 19353272
    [Abstract] [Full Text] [Related]

  • 10. Sensing capability of the localized surface plasmon resonance of gold nanorods.
    Chen CD, Cheng SF, Chau LK, Wang CR.
    Biosens Bioelectron; 2007 Jan 15; 22(6):926-32. PubMed ID: 16697633
    [Abstract] [Full Text] [Related]

  • 11. On-chip surface-based detection with nanohole arrays.
    De Leebeeck A, Kumar LK, de Lange V, Sinton D, Gordon R, Brolo AG.
    Anal Chem; 2007 Jun 01; 79(11):4094-100. PubMed ID: 17447728
    [Abstract] [Full Text] [Related]

  • 12. Signal enhancement of surface plasmon resonance based on gold nanoparticle-antibody complex for immunoassay.
    Lee W, Oh BK, Kim YW, Choi JW.
    J Nanosci Nanotechnol; 2006 Nov 01; 6(11):3521-5. PubMed ID: 17252803
    [Abstract] [Full Text] [Related]

  • 13. Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating.
    Yeh WH, Petefish JW, Hillier AC.
    Anal Chem; 2011 Aug 01; 83(15):6047-53. PubMed ID: 21688830
    [Abstract] [Full Text] [Related]

  • 14. An interference localized surface plasmon resonance biosensor based on the photonic structure of Au nanoparticles and SiO2/Si multilayers.
    Hiep HM, Yoshikawa H, Saito M, Tamiya E.
    ACS Nano; 2009 Feb 24; 3(2):446-52. PubMed ID: 19236084
    [Abstract] [Full Text] [Related]

  • 15. Enhanced fluorescence from arrays of nanoholes in a gold film.
    Brolo AG, Kwok SC, Moffitt MG, Gordon R, Riordon J, Kavanagh KL.
    J Am Chem Soc; 2005 Oct 26; 127(42):14936-41. PubMed ID: 16231950
    [Abstract] [Full Text] [Related]

  • 16. Biological sensing using transmission surface plasmon resonance spectroscopy.
    Lahav M, Vaskevich A, Rubinstein I.
    Langmuir; 2004 Aug 31; 20(18):7365-7. PubMed ID: 15323475
    [Abstract] [Full Text] [Related]

  • 17. Impact of apexes on the resonance shift in double hole nanocavities.
    Iyer S, Popov S, Friberg AT.
    Opt Express; 2010 Jan 04; 18(1):193-203. PubMed ID: 20173839
    [Abstract] [Full Text] [Related]

  • 18. Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy.
    Shumaker-Parry JS, Zareie MH, Aebersold R, Campbell CT.
    Anal Chem; 2004 Feb 15; 76(4):918-29. PubMed ID: 14961721
    [Abstract] [Full Text] [Related]

  • 19. Enhancing surface plasmon detection using ultrasmall nanoslits and a multispectral integration method.
    Lee KL, Wei PK.
    Small; 2010 Sep 06; 6(17):1900-7. PubMed ID: 20669239
    [Abstract] [Full Text] [Related]

  • 20. Nanoholes as nanochannels: flow-through plasmonic sensing.
    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D.
    Anal Chem; 2009 Jun 01; 81(11):4308-11. PubMed ID: 19408948
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.