These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


713 related items for PubMed ID: 19141039

  • 1. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.
    Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK.
    Lett Appl Microbiol; 2009 Feb; 48(2):173-9. PubMed ID: 19141039
    [Abstract] [Full Text] [Related]

  • 2. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli.
    Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S.
    Nanomedicine; 2007 Jun; 3(2):168-71. PubMed ID: 17468052
    [Abstract] [Full Text] [Related]

  • 3. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film.
    Ghosh S, Kaushik R, Nagalakshmi K, Hoti SL, Menezes GA, Harish BN, Vasan HN.
    Carbohydr Res; 2010 Oct 13; 345(15):2220-7. PubMed ID: 20800222
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Antimicrobial action and efficiency of silver-loaded zeolite X.
    Kwakye-Awuah B, Williams C, Kenward MA, Radecka I.
    J Appl Microbiol; 2008 May 13; 104(5):1516-24. PubMed ID: 18179543
    [Abstract] [Full Text] [Related]

  • 8. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.
    Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P.
    Colloids Surf B Biointerfaces; 2012 Aug 01; 96():69-74. PubMed ID: 22521683
    [Abstract] [Full Text] [Related]

  • 9. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles.
    Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A.
    Langmuir; 2006 Oct 24; 22(22):9322-8. PubMed ID: 17042548
    [Abstract] [Full Text] [Related]

  • 10. Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles.
    Bryaskova R, Pencheva D, Kyulavska M, Bozukova D, Debuigne A, Detrembleur C.
    J Colloid Interface Sci; 2010 Apr 15; 344(2):424-8. PubMed ID: 20074742
    [Abstract] [Full Text] [Related]

  • 11. Antimicrobial effect of silver-doped phosphate-based glasses.
    Ahmed I, Ready D, Wilson M, Knowles JC.
    J Biomed Mater Res A; 2006 Dec 01; 79(3):618-26. PubMed ID: 16826601
    [Abstract] [Full Text] [Related]

  • 12. Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi.
    Rai M, Ingle AP, Gade A, Duran N.
    IET Nanobiotechnol; 2015 Apr 01; 9(2):71-5. PubMed ID: 25829172
    [Abstract] [Full Text] [Related]

  • 13. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.
    Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K.
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug 01; 79(3):594-8. PubMed ID: 21536485
    [Abstract] [Full Text] [Related]

  • 14. Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles.
    Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, Bukhari SN.
    Int J Nanomedicine; 2015 Aug 01; 10():2079-88. PubMed ID: 25844038
    [Abstract] [Full Text] [Related]

  • 15. Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus.
    JankauskaitĿ V, VitkauskienĿ A, Lazauskas A, Baltrusaitis J, ProsyĿevas I, AndruleviĿius M.
    Int J Pharm; 2016 Sep 10; 511(1):90-97. PubMed ID: 27370911
    [Abstract] [Full Text] [Related]

  • 16. A sunlight-induced rapid synthesis of silver nanoparticles using sodium salt of N-cholyl amino acids and its antimicrobial applications.
    Annadhasan M, SankarBabu VR, Naresh R, Umamaheswari K, Rajendiran N.
    Colloids Surf B Biointerfaces; 2012 Aug 01; 96():14-21. PubMed ID: 22537720
    [Abstract] [Full Text] [Related]

  • 17. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria.
    Tamboli DP, Lee DS.
    J Hazard Mater; 2013 Sep 15; 260():878-84. PubMed ID: 23867968
    [Abstract] [Full Text] [Related]

  • 18. Chemical assembly of TiO2 and TiO2@Ag nanoparticles on silk fiber to produce multifunctional fabrics.
    Li G, Liu H, Zhao H, Gao Y, Wang J, Jiang H, Boughton RI.
    J Colloid Interface Sci; 2011 Jun 01; 358(1):307-15. PubMed ID: 21419419
    [Abstract] [Full Text] [Related]

  • 19. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects.
    Cao H, Liu X, Meng F, Chu PK.
    Biomaterials; 2011 Jan 01; 32(3):693-705. PubMed ID: 20970183
    [Abstract] [Full Text] [Related]

  • 20. Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method.
    Thakur N, Anu, Kumar K, Kumar A.
    Dalton Trans; 2021 May 14; 50(18):6188-6203. PubMed ID: 33871499
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.