These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces. Hodges LR, Rose LJ, O'Connell H, Arduino MJ. J Microbiol Methods; 2010 May; 81(2):141-6. PubMed ID: 20193714 [Abstract] [Full Text] [Related]
5. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples. Dauphin LA, Moser BD, Bowen MD. J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041 [Abstract] [Full Text] [Related]
8. Evaluation of interference to conventional and real-time PCR for detection and quantification of fungi in dust. Keswani J, Kashon ML, Chen BT. J Environ Monit; 2005 Apr; 7(4):311-8. PubMed ID: 15798797 [Abstract] [Full Text] [Related]
9. Use of onsite technologies for rapidly assessing environmental Bacillus anthracis contamination on surfaces in buildings. Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep; 2001 Dec 07; 50(48):1087. PubMed ID: 11770505 [Abstract] [Full Text] [Related]
10. Detection of spores of Bacillus anthracis from environment using polymerase chain reaction. Alam SI, Agarwal GS, Kamboj DV, Rai GP, Singh L. Indian J Exp Biol; 2003 Feb 07; 41(2):177-80. PubMed ID: 15255613 [Abstract] [Full Text] [Related]
11. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture. Hutchison JR, Piepel GF, Amidan BG, Hess BM, Sydor MA, Deatherage Kaiser BL. J Appl Microbiol; 2018 May 07; 124(5):1092-1106. PubMed ID: 29356220 [Abstract] [Full Text] [Related]
12. High throughput screening for spores and vegetative forms of pathogenic B. anthracis by an internally controlled real-time PCR assay with automated DNA preparation. Panning M, Kramme S, Petersen N, Drosten C. Med Microbiol Immunol; 2007 Mar 07; 196(1):41-50. PubMed ID: 17093976 [Abstract] [Full Text] [Related]
13. Evaluation of a modified rapid viability-polymerase chain reaction method for Bacillus atrophaeus spores in water matrices. Bushon RN, Brady AMG, Kephart CM, Gallardo V. J Microbiol Methods; 2021 Sep 07; 188():106293. PubMed ID: 34324928 [Abstract] [Full Text] [Related]
16. An integrated culture and real-time PCR method to assess viability of disinfectant treated Bacillus spores using robotics and the MPN quantification method. Varughese EA, Wymer LJ, Haugland RA. J Microbiol Methods; 2007 Oct 07; 71(1):66-70. PubMed ID: 17804100 [Abstract] [Full Text] [Related]
17. Rapid differentiation and enumeration of the total, viable vegetative cell and spore content of thermophilic bacilli in milk powders with reference to Anoxybacillus flavithermus. Rueckert A, Ronimus RS, Morgan HW. J Appl Microbiol; 2005 Oct 07; 99(5):1246-55. PubMed ID: 16238756 [Abstract] [Full Text] [Related]
18. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples. Létant SE, Murphy GA, Alfaro TM, Avila JR, Kane SR, Raber E, Bunt TM, Shah SR. Appl Environ Microbiol; 2011 Sep 07; 77(18):6570-8. PubMed ID: 21764960 [Abstract] [Full Text] [Related]