These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration. Berke GS, Hanson DG, Gerratt BR, Trapp TK, Macagba C, Natividad M. Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407 [Abstract] [Full Text] [Related]
4. Optimized transformation of the glottal motion into a mechanical model. Triep M, Brücker C, Stingl M, Döllinger M. Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384 [Abstract] [Full Text] [Related]
5. A computational study of the effect of vocal-fold asymmetry on phonation. Xue Q, Mittal R, Zheng X, Bielamowicz S. J Acoust Soc Am; 2010 Aug; 128(2):818-27. PubMed ID: 20707451 [Abstract] [Full Text] [Related]
7. The minimum glottal airflow to initiate vocal fold oscillation. Jiang JJ, Tao C. J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186 [Abstract] [Full Text] [Related]
8. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds. Alipour F, Scherer RC. J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541 [Abstract] [Full Text] [Related]
9. Vocal fold bulging effects on phonation using a biophysical computer model. Alipour F, Scherer RC. J Voice; 2000 Dec; 14(4):470-83. PubMed ID: 11130105 [Abstract] [Full Text] [Related]
10. An experimental analysis of the pressures and flows within a driven mechanical model of phonation. Kucinschi BR, Scherer RC, Dewitt KJ, Ng TT. J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957 [Abstract] [Full Text] [Related]