These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 19143604

  • 1. Reverse gyrase and genome stability in hyperthermophilic organisms.
    Perugino G, Valenti A, D'amaro A, Rossi M, Ciaramella M.
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):69-73. PubMed ID: 19143604
    [Abstract] [Full Text] [Related]

  • 2. Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms.
    D'Amaro A, Rossi M, Ciaramella M.
    Ital J Biochem; 2007 Jun; 56(2):103-9. PubMed ID: 17722650
    [Abstract] [Full Text] [Related]

  • 3. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP, Klostermeier D.
    J Mol Biol; 2007 Aug 03; 371(1):197-209. PubMed ID: 17560602
    [Abstract] [Full Text] [Related]

  • 4. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y, Klostermeier D, Rudolph MG.
    Biochemistry; 2011 Jul 05; 50(26):5816-23. PubMed ID: 21627332
    [Abstract] [Full Text] [Related]

  • 5. The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea.
    Forterre P, Bergerat A, Lopez-Garcia P.
    FEMS Microbiol Rev; 1996 May 05; 18(2-3):237-48. PubMed ID: 8639331
    [Abstract] [Full Text] [Related]

  • 6. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M.
    Nucleic Acids Res; 2005 May 05; 33(2):564-76. PubMed ID: 15673717
    [Abstract] [Full Text] [Related]

  • 7. Nucleotide-driven conformational changes in the reverse gyrase helicase-like domain couple the nucleotide cycle to DNA processing.
    del Toro Duany Y, Klostermeier D.
    Phys Chem Chem Phys; 2011 Jun 07; 13(21):10009-19. PubMed ID: 21350762
    [Abstract] [Full Text] [Related]

  • 8. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A, del Toro Duany Y, Klostermeier D.
    J Mol Biol; 2013 Jan 09; 425(1):32-40. PubMed ID: 23123378
    [Abstract] [Full Text] [Related]

  • 9. The reverse gyrase from Pyrobaculum calidifontis, a novel extremely thermophilic DNA topoisomerase endowed with DNA unwinding and annealing activities.
    Jamroze A, Perugino G, Valenti A, Rashid N, Rossi M, Akhtar M, Ciaramella M.
    J Biol Chem; 2014 Feb 07; 289(6):3231-43. PubMed ID: 24347172
    [Abstract] [Full Text] [Related]

  • 10. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC.
    Biochemistry; 2003 May 27; 42(20):5993-6004. PubMed ID: 12755601
    [Abstract] [Full Text] [Related]

  • 11. Genome stability: recent insights in the topoisomerase reverse gyrase and thermophilic DNA alkyltransferase.
    Vettone A, Perugino G, Rossi M, Valenti A, Ciaramella M.
    Extremophiles; 2014 Sep 27; 18(5):895-904. PubMed ID: 25102812
    [Abstract] [Full Text] [Related]

  • 12. The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain.
    del Toro Duany Y, Jungblut SP, Schmidt AS, Klostermeier D.
    Nucleic Acids Res; 2008 Oct 27; 36(18):5882-95. PubMed ID: 18796525
    [Abstract] [Full Text] [Related]

  • 13. Reverse gyrase: an insight into the role of DNA-topoisomerases.
    Nadal M.
    Biochimie; 2007 Apr 27; 89(4):447-55. PubMed ID: 17316953
    [Abstract] [Full Text] [Related]

  • 14. The archaeal topoisomerase reverse gyrase is a helix-destabilizing protein that unwinds four-way DNA junctions.
    Valenti A, Perugino G, Varriale A, D'Auria S, Rossi M, Ciaramella M.
    J Biol Chem; 2010 Nov 19; 285(47):36532-41. PubMed ID: 20851892
    [Abstract] [Full Text] [Related]

  • 15. DNA supercoiling and temperature adaptation: A clue to early diversification of life?
    López-García P.
    J Mol Evol; 1999 Oct 19; 49(4):439-52. PubMed ID: 10486002
    [Abstract] [Full Text] [Related]

  • 16. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain.
    Mhaindarkar VP, Rasche R, Kümmel D, Rudolph MG, Klostermeier D.
    Acta Crystallogr D Struct Biol; 2023 Jun 01; 79(Pt 6):498-507. PubMed ID: 37204816
    [Abstract] [Full Text] [Related]

  • 17. Characterization of the reverse gyrase from the hyperthermophilic archaeon Pyrococcus furiosus.
    Borges KM, Bergerat A, Bogert AM, DiRuggiero J, Forterre P, Robb FT.
    J Bacteriol; 1997 Mar 01; 179(5):1721-6. PubMed ID: 9045834
    [Abstract] [Full Text] [Related]

  • 18. Reverse gyrase--recent advances and current mechanistic understanding of positive DNA supercoiling.
    Lulchev P, Klostermeier D.
    Nucleic Acids Res; 2014 Jul 01; 42(13):8200-13. PubMed ID: 25013168
    [Abstract] [Full Text] [Related]

  • 19. The linkage between reverse gyrase and hyperthermophiles: a review of their invariable association.
    Heine M, Chandra SB.
    J Microbiol; 2009 Jun 01; 47(3):229-34. PubMed ID: 19557338
    [Abstract] [Full Text] [Related]

  • 20. The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling.
    Ganguly A, Del Toro Duany Y, Rudolph MG, Klostermeier D.
    Nucleic Acids Res; 2011 Mar 01; 39(5):1789-800. PubMed ID: 21051354
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.