These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 19144179
21. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains. Lin X, Yu AQ, Zhang CY, Pi L, Bai XW, Xiao DG. Microb Cell Fact; 2017 Nov 09; 16(1):194. PubMed ID: 29121937 [Abstract] [Full Text] [Related]
22. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Johnston M. Trends Genet; 1999 Jan 09; 15(1):29-33. PubMed ID: 10087931 [Abstract] [Full Text] [Related]
24. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Schüller HJ. Curr Genet; 2003 Jun 09; 43(3):139-60. PubMed ID: 12715202 [Abstract] [Full Text] [Related]
25. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae. Nijland JG, Shin HY, Boender LGM, de Waal PP, Klaassen P, Driessen AJM. Appl Environ Microbiol; 2017 Jun 01; 83(11):. PubMed ID: 28363963 [Abstract] [Full Text] [Related]
26. Glucose controls multiple processes in Saccharomyces cerevisiae through diverse combinations of signaling pathways. Belinchón MM, Gancedo JM. FEMS Yeast Res; 2007 Sep 01; 7(6):808-18. PubMed ID: 17428308 [Abstract] [Full Text] [Related]
27. Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae. Erickson JR, Johnston M. Genetics; 1994 Apr 01; 136(4):1271-8. PubMed ID: 8013904 [Abstract] [Full Text] [Related]
28. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene. Herrero P, Flores L, de la Cera T, Moreno F. Biochem J; 1999 Oct 15; 343 Pt 2(Pt 2):319-25. PubMed ID: 10510295 [Abstract] [Full Text] [Related]
30. Overexpression of HAP4 in glucose-derepressed yeast cells reveals respiratory control of glucose-regulated genes. Lascaris R, Piwowarski J, van der Spek H, de Mattos JT, Grivell L, Blom J. Microbiology (Reading); 2004 Apr 15; 150(Pt 4):929-934. PubMed ID: 15073302 [Abstract] [Full Text] [Related]
31. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment. Dikicioglu D, Dunn WB, Kell DB, Kirdar B, Oliver SG. Mol Biosyst; 2012 Jun 15; 8(6):1760-74. PubMed ID: 22491778 [Abstract] [Full Text] [Related]
32. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. Westholm JO, Nordberg N, Murén E, Ameur A, Komorowski J, Ronne H. BMC Genomics; 2008 Dec 16; 9():601. PubMed ID: 19087243 [Abstract] [Full Text] [Related]
33. Inactivation of the UAS1 of STA1 by glucose and STA10 and identification of two loci, SNS1 and MSS1, involved in STA10-dependent repression in Saccharomyces cerevisiae. Ahn JH, Park SH, Kang HS. Mol Gen Genet; 1995 Mar 10; 246(5):529-37. PubMed ID: 7700227 [Abstract] [Full Text] [Related]
36. SIT4 regulation of Mig1p-mediated catabolite repression in Saccharomyces cerevisiae. Jin C, Barrientos A, Epstein CB, Butow RA, Tzagoloff A. FEBS Lett; 2007 Dec 11; 581(29):5658-63. PubMed ID: 18022394 [Abstract] [Full Text] [Related]
37. Carbon catabolite repression regulates amino acid permeases in Saccharomyces cerevisiae via the TOR signaling pathway. Peter GJ, Düring L, Ahmed A. J Biol Chem; 2006 Mar 03; 281(9):5546-52. PubMed ID: 16407266 [Abstract] [Full Text] [Related]
38. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Polish JA, Kim JH, Johnston M. Genetics; 2005 Feb 03; 169(2):583-94. PubMed ID: 15489524 [Abstract] [Full Text] [Related]