These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 19144179

  • 41. Elementary signaling modes predict the essentiality of signal transduction network components.
    Wang RS, Albert R.
    BMC Syst Biol; 2011 Mar 22; 5():44. PubMed ID: 21426566
    [Abstract] [Full Text] [Related]

  • 42. Human pancreatic beta-cell glucokinase: subcellular localization and glucose repression signalling function in the yeast cell.
    Riera A, Ahuatzi D, Herrero P, Garcia-Gimeno MA, Sanz P, Moreno F.
    Biochem J; 2008 Oct 15; 415(2):233-9. PubMed ID: 18588509
    [Abstract] [Full Text] [Related]

  • 43. Molecular communication: crosstalk between the Snf1 and other signaling pathways.
    Shashkova S, Welkenhuysen N, Hohmann S.
    FEMS Yeast Res; 2015 Jun 15; 15(4):fov026. PubMed ID: 25994786
    [Abstract] [Full Text] [Related]

  • 44. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J, Trumbly RJ.
    Yeast; 1998 Aug 15; 14(11):985-1000. PubMed ID: 9730278
    [Abstract] [Full Text] [Related]

  • 45. Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae.
    Park SH, Koh SS, Chun JH, Hwang HJ, Kang HS.
    Mol Cell Biol; 1999 Mar 15; 19(3):2044-50. PubMed ID: 10022891
    [Abstract] [Full Text] [Related]

  • 46. Identification and characterisation of two transcriptional repressor elements within the coding sequence of the Saccharomyces cerevisiae HXK2 gene.
    Herrero P, Ramírez M, Martínez-Campa C, Moreno F.
    Nucleic Acids Res; 1996 May 15; 24(10):1822-8. PubMed ID: 8657561
    [Abstract] [Full Text] [Related]

  • 47. Two different signals regulate repression and induction of gene expression by glucose.
    Ozcan S.
    J Biol Chem; 2002 Dec 06; 277(49):46993-7. PubMed ID: 12351652
    [Abstract] [Full Text] [Related]

  • 48. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation.
    Proft M, Serrano R.
    Mol Cell Biol; 1999 Jan 06; 19(1):537-46. PubMed ID: 9858577
    [Abstract] [Full Text] [Related]

  • 49. Genetic aspects of carbon catabolite repression of the STA2 glucoamylase gene in Saccharomyces cerevisiae.
    Kartasheva NN, Kuchin SV, Benevolensky SV.
    Yeast; 1996 Oct 06; 12(13):1297-300. PubMed ID: 8923734
    [Abstract] [Full Text] [Related]

  • 50. The pH-sensing Rim101 pathway positively regulates the transcriptional expression of the calcium pump gene PMR1 to affect calcium sensitivity in budding yeast.
    Yan H, Fang T, Xu H, Jiang L.
    Biochem Biophys Res Commun; 2020 Nov 12; 532(3):453-458. PubMed ID: 32891431
    [Abstract] [Full Text] [Related]

  • 51. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.
    Berestovsky N, Zhou W, Nagrath D, Nakhleh L.
    PLoS Comput Biol; 2013 Nov 12; 9(11):e1003306. PubMed ID: 24244124
    [Abstract] [Full Text] [Related]

  • 52. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
    Ahuatzi D, Herrero P, de la Cera T, Moreno F.
    J Biol Chem; 2004 Apr 02; 279(14):14440-6. PubMed ID: 14715653
    [Abstract] [Full Text] [Related]

  • 53. Multi-omic characterization of laboratory-evolved Saccharomyces cerevisiae HJ7-14 with high ability of algae-based ethanol production.
    Kim SJ, Lee JE, Lee DY, Park H, Kim KH, Park YC.
    Appl Microbiol Biotechnol; 2018 Oct 02; 102(20):8989-9002. PubMed ID: 30121750
    [Abstract] [Full Text] [Related]

  • 54. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein.
    Tung KS, Hopper AK.
    Mol Gen Genet; 1995 Apr 10; 247(1):48-54. PubMed ID: 7715603
    [Abstract] [Full Text] [Related]

  • 55. Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3.
    Bertram PG, Choi JH, Carvalho J, Chan TF, Ai W, Zheng XF.
    Mol Cell Biol; 2002 Feb 10; 22(4):1246-52. PubMed ID: 11809814
    [Abstract] [Full Text] [Related]

  • 56. Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1.
    Lakshmanan J, Mosley AL, Ozcan S.
    Curr Genet; 2003 Oct 10; 44(1):19-25. PubMed ID: 14508605
    [Abstract] [Full Text] [Related]

  • 57. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production.
    Alcaíno J, Bravo N, Córdova P, Marcoleta AE, Contreras G, Barahona S, Sepúlveda D, Fernández-Lobato M, Baeza M, Cifuentes V.
    PLoS One; 2016 Oct 10; 11(9):e0162838. PubMed ID: 27622474
    [Abstract] [Full Text] [Related]

  • 58. Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae.
    Kim JH, Johnston M.
    J Biol Chem; 2006 Sep 08; 281(36):26144-9. PubMed ID: 16844691
    [Abstract] [Full Text] [Related]

  • 59. Physiological characterization of glucose repression in the strains with SNF1 and SNF4 genes deleted.
    Usaite R, Nielsen J, Olsson L.
    J Biotechnol; 2008 Jan 01; 133(1):73-81. PubMed ID: 17949842
    [Abstract] [Full Text] [Related]

  • 60. The Reg1-interacting proteins, Bmh1, Bmh2, Ssb1, and Ssb2, have roles in maintaining glucose repression in Saccharomyces cerevisiae.
    Dombek KM, Kacherovsky N, Young ET.
    J Biol Chem; 2004 Sep 10; 279(37):39165-74. PubMed ID: 15220335
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.