These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 19144767

  • 1. Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes.
    Tóth SZ, Puthur JT, Nagy V, Garab G.
    Plant Physiol; 2009 Mar; 149(3):1568-78. PubMed ID: 19144767
    [Abstract] [Full Text] [Related]

  • 2. The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves.
    Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G.
    Plant Physiol; 2011 May; 156(1):382-92. PubMed ID: 21357184
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol.
    Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R.
    J Plant Physiol; 2011 Sep 01; 168(13):1526-33. PubMed ID: 21458884
    [Abstract] [Full Text] [Related]

  • 6. Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II.
    Tóth SZ, Schansker G, Garab G, Strasser RJ.
    Biochim Biophys Acta; 2007 Apr 01; 1767(4):295-305. PubMed ID: 17412308
    [Abstract] [Full Text] [Related]

  • 7. PHOTOSYSTEM II PROTEIN33, a protein conserved in the plastid lineage, is associated with the chloroplast thylakoid membrane and provides stability to photosystem II supercomplexes in Arabidopsis.
    Fristedt R, Herdean A, Blaby-Haas CE, Mamedov F, Merchant SS, Last RL, Lundin B.
    Plant Physiol; 2015 Feb 01; 167(2):481-92. PubMed ID: 25511433
    [Abstract] [Full Text] [Related]

  • 8. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants.
    Tyutereva EV, Evkaikina AI, Ivanova AN, Voitsekhovskaja OV.
    Photosynth Res; 2017 Sep 01; 133(1-3):357-370. PubMed ID: 28382592
    [Abstract] [Full Text] [Related]

  • 9. Competition between linear and cyclic electron flow in plants deficient in Photosystem I.
    Hald S, Pribil M, Leister D, Gallois P, Johnson GN.
    Biochim Biophys Acta; 2008 Sep 01; 1777(9):1173-83. PubMed ID: 18501696
    [Abstract] [Full Text] [Related]

  • 10. Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes.
    Marutani Y, Yamauchi Y, Kimura Y, Mizutani M, Sugimoto Y.
    Planta; 2012 Aug 01; 236(2):753-61. PubMed ID: 22526503
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Comparison of the electron transport properties of the psbo1 and psbo2 mutants of Arabidopsis thaliana.
    Allahverdiyeva Y, Mamedov F, Holmström M, Nurmi M, Lundin B, Styring S, Spetea C, Aro EM.
    Biochim Biophys Acta; 2009 Oct 01; 1787(10):1230-7. PubMed ID: 19486880
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units.
    Bukhov N, Egorova E, Carpentier R.
    Planta; 2002 Sep 01; 215(5):812-20. PubMed ID: 12244447
    [Abstract] [Full Text] [Related]

  • 15. Abolition of photosystem I cyclic electron flow in Arabidopsis thaliana following thermal-stress.
    Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R.
    Plant Physiol Biochem; 2011 Mar 01; 49(3):235-43. PubMed ID: 21256041
    [Abstract] [Full Text] [Related]

  • 16. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency.
    Saito A, Iino T, Sonoike K, Miwa E, Higuchi K.
    Plant Cell Physiol; 2010 Dec 01; 51(12):2013-30. PubMed ID: 20980268
    [Abstract] [Full Text] [Related]

  • 17. Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I.
    Mano J, Hideg E, Asada K.
    Arch Biochem Biophys; 2004 Sep 01; 429(1):71-80. PubMed ID: 15288811
    [Abstract] [Full Text] [Related]

  • 18. Effect of protein modification by malondialdehyde on the interaction between the oxygen-evolving complex 33 kDa protein and photosystem II core proteins.
    Yamauchi Y, Sugimoto Y.
    Planta; 2010 Apr 01; 231(5):1077-88. PubMed ID: 20157726
    [Abstract] [Full Text] [Related]

  • 19. Roles of the cyclic electron flow around PSI (CEF-PSI) and O₂-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana.
    Kono M, Noguchi K, Terashima I.
    Plant Cell Physiol; 2014 May 01; 55(5):990-1004. PubMed ID: 24553846
    [Abstract] [Full Text] [Related]

  • 20. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.
    Tardy F, Havaux M.
    J Photochem Photobiol B; 1996 Jun 01; 34(1):87-94. PubMed ID: 8765663
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.