These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
830 related items for PubMed ID: 19150614
1. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses. Lee HJ, Jakovcevski I, Radonjic N, Hoelters L, Schachner M, Irintchev A. Exp Neurol; 2009 Apr; 216(2):365-74. PubMed ID: 19150614 [Abstract] [Full Text] [Related]
3. Adhesion molecules close homolog of L1 and tenascin-C affect blood-spinal cord barrier repair. Peter NR, Shah RT, Chen J, Irintchev A, Schachner M. Neuroreport; 2012 May 30; 23(8):479-82. PubMed ID: 22473292 [Abstract] [Full Text] [Related]
6. Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury. Lavdas AA, Chen J, Papastefanaki F, Chen S, Schachner M, Matsas R, Thomaidou D. Exp Neurol; 2010 Jan 30; 221(1):206-16. PubMed ID: 19909742 [Abstract] [Full Text] [Related]
7. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury. Chu GK, Yu W, Fehlings MG. Neuroscience; 2007 Sep 07; 148(3):668-82. PubMed ID: 17706365 [Abstract] [Full Text] [Related]
8. Transgenic overexpression of the cell adhesion molecule L1 in neurons facilitates recovery after mouse spinal cord injury. Jakovcevski I, Djogo N, Hölters LS, Szpotowicz E, Schachner M. Neuroscience; 2013 Nov 12; 252():1-12. PubMed ID: 23933311 [Abstract] [Full Text] [Related]
9. FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Casha S, Yu WR, Fehlings MG. Exp Neurol; 2005 Dec 12; 196(2):390-400. PubMed ID: 16202410 [Abstract] [Full Text] [Related]
10. Histological and functional evaluation of experimental spinal cord injury: evidence of a stepwise response to graded compression. Gruner JA, Yee AK, Blight AR. Brain Res; 1996 Aug 05; 729(1):90-101. PubMed ID: 8874880 [Abstract] [Full Text] [Related]
11. Differential motor and electrophysiological outcome in rats with mid-thoracic or high lumbar incomplete spinal cord injuries. García-Alías G, Valero-Cabré A, López-Vales R, Forés J, Verdú E, Navarro X. Brain Res; 2006 Sep 07; 1108(1):195-204. PubMed ID: 16859653 [Abstract] [Full Text] [Related]
12. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment. Marques SA, Garcez VF, Del Bel EA, Martinez AM. J Neurosci Methods; 2009 Feb 15; 177(1):183-93. PubMed ID: 19013194 [Abstract] [Full Text] [Related]
13. Neuronal function in chronic spinal cord injury: divergence between locomotor and flexion- and H-reflex activity. Müller R, Dietz V. Clin Neurophysiol; 2006 Jul 15; 117(7):1499-507. PubMed ID: 16690351 [Abstract] [Full Text] [Related]
18. Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Kunkel-Bagden E, Dai HN, Bregman BS. Exp Neurol; 1993 Feb 15; 119(2):153-64. PubMed ID: 8432357 [Abstract] [Full Text] [Related]
19. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord. Saruhashi Y, Matsusue Y, Fujimiya M. Arch Orthop Trauma Surg; 2009 Sep 15; 129(9):1279-85. PubMed ID: 18825396 [Abstract] [Full Text] [Related]
20. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord. Loers G, Cui YF, Neumaier I, Schachner M, Skerra A. Biochem J; 2014 Jun 15; 460(3):437-46. PubMed ID: 24673421 [Abstract] [Full Text] [Related] Page: [Next] [New Search]