These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


353 related items for PubMed ID: 19154205

  • 21. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR).
    Govrin EM, Levine A.
    Plant Mol Biol; 2002 Feb 01; 48(3):267-76. PubMed ID: 11855728
    [Abstract] [Full Text] [Related]

  • 22. Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin Biosynthesis in Arabidopsis.
    Zhou J, Wang X, He Y, Sang T, Wang P, Dai S, Zhang S, Meng X.
    Plant Cell; 2020 Aug 01; 32(8):2621-2638. PubMed ID: 32439826
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana.
    Denby KJ, Kumar P, Kliebenstein DJ.
    Plant J; 2004 May 01; 38(3):473-86. PubMed ID: 15086796
    [Abstract] [Full Text] [Related]

  • 26. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana.
    Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E.
    Plant Cell; 2009 Jun 01; 21(6):1830-45. PubMed ID: 19567706
    [Abstract] [Full Text] [Related]

  • 27. RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea.
    Ono E, Mise K, Takano Y.
    Sci Rep; 2020 Aug 14; 10(1):13798. PubMed ID: 32796867
    [Abstract] [Full Text] [Related]

  • 28. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.
    Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y.
    Plant J; 2011 Jul 14; 67(1):81-93. PubMed ID: 21418358
    [Abstract] [Full Text] [Related]

  • 29. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
    La Camera S, L'haridon F, Astier J, Zander M, Abou-Mansour E, Page G, Thurow C, Wendehenne D, Gatz C, Métraux JP, Lamotte O.
    Plant J; 2011 Nov 14; 68(3):507-19. PubMed ID: 21756272
    [Abstract] [Full Text] [Related]

  • 30. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis.
    Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S.
    Plant Cell; 2011 Apr 14; 23(4):1639-53. PubMed ID: 21498677
    [Abstract] [Full Text] [Related]

  • 31. Yeast increases resistance in Arabidopsis against Pseudomonas syringae and Botrytis cinerea by salicylic acid-dependent as well as -independent mechanisms.
    Raacke IC, von Rad U, Mueller MJ, Berger S.
    Mol Plant Microbe Interact; 2006 Oct 14; 19(10):1138-46. PubMed ID: 17022178
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis.
    Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E.
    Plant Physiol; 2006 Aug 14; 141(4):1248-54. PubMed ID: 16766671
    [Abstract] [Full Text] [Related]

  • 35. Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol.
    Schouten A, Maksimova O, Cuesta-Arenas Y, van den Berg G, Raaijmakers JM.
    Environ Microbiol; 2008 May 14; 10(5):1145-57. PubMed ID: 18218030
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Botrytis cinerea tolerates phytoalexins produced by Solanaceae and Fabaceae plants through an efflux transporter BcatrB and metabolizing enzymes.
    Bulasag AS, Camagna M, Kuroyanagi T, Ashida A, Ito K, Tanaka A, Sato I, Chiba S, Ojika M, Takemoto D.
    Front Plant Sci; 2023 May 14; 14():1177060. PubMed ID: 37332725
    [Abstract] [Full Text] [Related]

  • 38. Camalexin Quantification in Arabidopsis thaliana Leaves Infected with Botrytis cinerea.
    Savatin DV, Bisceglia NG, Gravino M, Fabbri C, Pontiggia D, Mattei B.
    Bio Protoc; 2015 Jan 20; 5(2):. PubMed ID: 29085857
    [Abstract] [Full Text] [Related]

  • 39. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions.
    Aryal B, Xia J, Hu Z, Stumpe M, Tsering T, Liu J, Huynh J, Fukao Y, Glöckner N, Huang HY, Sáncho-Andrés G, Pakula K, Ziegler J, Gorzolka K, Zwiewka M, Nodzynski T, Harter K, Sánchez-Rodríguez C, Jasiński M, Rosahl S, Geisler MM.
    Curr Biol; 2023 May 22; 33(10):2008-2023.e8. PubMed ID: 37146609
    [Abstract] [Full Text] [Related]

  • 40. Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis.
    Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D, Ohta D.
    Mol Plant Microbe Interact; 2012 May 22; 25(5):684-96. PubMed ID: 22295908
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.