These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


281 related items for PubMed ID: 19154814

  • 1. Quantitative detection of antibody based on single-molecule counting by total internal reflection fluorescence microscopy with quantum dot labeling.
    Jiang D, Wang L, Jiang W.
    Anal Chim Acta; 2009 Feb 16; 634(1):83-8. PubMed ID: 19154814
    [Abstract] [Full Text] [Related]

  • 2. Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium.
    Wang L, Xu G, Shi Z, Jiang W, Jin W.
    Anal Chim Acta; 2007 May 02; 590(1):104-9. PubMed ID: 17416229
    [Abstract] [Full Text] [Related]

  • 3. Solid phase single-molecule counting of antibody binding to supported protein layers surface with low nonspecific adsorption.
    Jiang D, Zhang Q, Shen X, Wang L, Jiang W.
    Talanta; 2010 Aug 15; 82(3):1003-9. PubMed ID: 20678659
    [Abstract] [Full Text] [Related]

  • 4. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling.
    Jiang D, Liu C, Wang L, Jiang W.
    Anal Chim Acta; 2010 Mar 10; 662(2):170-6. PubMed ID: 20171316
    [Abstract] [Full Text] [Related]

  • 5. Ultra-sensitive DNA assay based on single-molecule detection coupled with fluorescent quantum dot-labeling and its application to determination of messenger RNA.
    Li L, Li X, Li L, Wang J, Jin W.
    Anal Chim Acta; 2011 Jan 24; 685(1):52-7. PubMed ID: 21168551
    [Abstract] [Full Text] [Related]

  • 6. Quantitative counting of single fluorescent molecules by combined electrochemical adsorption accumulation and total internal reflection fluorescence microscopy.
    Li L, Tian X, Zou G, Shi Z, Zhang X, Jin W.
    Anal Chem; 2008 Jun 01; 80(11):3999-4006. PubMed ID: 18442261
    [Abstract] [Full Text] [Related]

  • 7. Quantitative detection of single molecules using enhancement of Dye/DNA conjugate-labeled nanoparticles.
    Xue Q, Jiang D, Wang L, Jiang W.
    Bioconjug Chem; 2010 Nov 17; 21(11):1987-93. PubMed ID: 20979380
    [Abstract] [Full Text] [Related]

  • 8. Quantitative single-molecule detection of protein based on DNA tetrahedron fluorescent nanolabels.
    Ding Y, Liu X, Zhu J, Wang L, Jiang W.
    Talanta; 2014 Jul 17; 125():393-9. PubMed ID: 24840462
    [Abstract] [Full Text] [Related]

  • 9. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.
    Mason JN, Tomlinson ID, Rosenthal SJ, Blakely RD.
    Methods Mol Biol; 2005 Jul 17; 303():35-50. PubMed ID: 15923673
    [Abstract] [Full Text] [Related]

  • 10. Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells.
    Kim K, Kim DJ, Cho EJ, Suh JS, Huh YM, Kim D.
    Nanotechnology; 2009 Jan 07; 20(1):015202. PubMed ID: 19417244
    [Abstract] [Full Text] [Related]

  • 11. Single-molecule-counting protein microarray assay with nanoliter samples and its application in the dynamic protein expression of living cells.
    Li L, Qu X, Sun J, Yang M, Song B, Shao Q, Zhang X, Jin W.
    Biosens Bioelectron; 2011 Apr 15; 26(8):3688-91. PubMed ID: 21371878
    [Abstract] [Full Text] [Related]

  • 12. A self-assembled quantum dot probe for detecting beta-lactamase activity.
    Xu C, Xing B, Rao J.
    Biochem Biophys Res Commun; 2006 Jun 09; 344(3):931-5. PubMed ID: 16631595
    [Abstract] [Full Text] [Related]

  • 13. Magnetic bead based assay for C-reactive protein using quantum-dot fluorescence labeling and immunoaffinity separation.
    Zhu X, Duan D, Publicover NG.
    Analyst; 2010 Feb 09; 135(2):381-9. PubMed ID: 20098774
    [Abstract] [Full Text] [Related]

  • 14. Biotin-avidin binding kinetics measured by single-molecule imaging.
    Wayment JR, Harris JM.
    Anal Chem; 2009 Jan 01; 81(1):336-42. PubMed ID: 19117461
    [Abstract] [Full Text] [Related]

  • 15. Tracking individual proteins in living cells using single quantum dot imaging.
    Courty S, Bouzigues C, Luccardini C, Ehrensperger MV, Bonneau S, Dahan M.
    Methods Enzymol; 2006 Jan 01; 414():211-28. PubMed ID: 17110194
    [Abstract] [Full Text] [Related]

  • 16. Detection of single bacterial pathogens with semiconductor quantum dots.
    Hahn MA, Tabb JS, Krauss TD.
    Anal Chem; 2005 Aug 01; 77(15):4861-9. PubMed ID: 16053299
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Antibody-gold quantum dot-PAMAM dendrimer complex as an immunoglobulin immunoassay.
    Triulzi RC, Micic M, Orbulescu J, Giordani S, Mueller B, Leblanc RM.
    Analyst; 2008 May 01; 133(5):667-72. PubMed ID: 18427690
    [Abstract] [Full Text] [Related]

  • 20. Measuring an antibody affinity distribution molecule by molecule.
    Temirov JP, Bradbury AR, Werner JH.
    Anal Chem; 2008 Nov 15; 80(22):8642-8. PubMed ID: 18847284
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.