These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


333 related items for PubMed ID: 19157835

  • 1. Life cycle impact assessment of various waste conversion technologies.
    Khoo HH.
    Waste Manag; 2009 Jun; 29(6):1892-900. PubMed ID: 19157835
    [Abstract] [Full Text] [Related]

  • 2. Application of the US decision support tool for materials and waste management.
    Thorneloe SA, Weitz K, Jambeck J.
    Waste Manag; 2007 Jun; 27(8):1006-20. PubMed ID: 17433663
    [Abstract] [Full Text] [Related]

  • 3. Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature.
    Cleary J.
    Environ Int; 2009 Nov; 35(8):1256-66. PubMed ID: 19682746
    [Abstract] [Full Text] [Related]

  • 4. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A, Barton JR, Karagiannidis A.
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [Abstract] [Full Text] [Related]

  • 5. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.
    Dong J, Tang Y, Nzihou A, Chi Y, Weiss-Hortala E, Ni M.
    Sci Total Environ; 2018 Jun 01; 626():744-753. PubMed ID: 29396338
    [Abstract] [Full Text] [Related]

  • 6. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor.
    Luo S, Xiao B, Hu Z, Liu S, Guan Y, Cai L.
    Bioresour Technol; 2010 Aug 01; 101(16):6517-20. PubMed ID: 20363619
    [Abstract] [Full Text] [Related]

  • 7. Life cycle assessment of bagasse waste management options.
    Kiatkittipong W, Wongsuchoto P, Pavasant P.
    Waste Manag; 2009 May 01; 29(5):1628-33. PubMed ID: 19136243
    [Abstract] [Full Text] [Related]

  • 8. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH, Kobayashi J, Kawamoto K.
    Waste Manag; 2014 Feb 01; 34(2):402-10. PubMed ID: 24246576
    [Abstract] [Full Text] [Related]

  • 9. The use of LCA in selecting the best MSW management system.
    De Feo G, Malvano C.
    Waste Manag; 2009 Jun 01; 29(6):1901-15. PubMed ID: 19168344
    [Abstract] [Full Text] [Related]

  • 10. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L, Carnevale E, Corti A.
    Waste Manag; 2015 Mar 01; 37():26-44. PubMed ID: 25535103
    [Abstract] [Full Text] [Related]

  • 11. Life cycle assessment of municipal solid waste management methods: Ankara case study.
    Ozeler D, Yetiş U, Demirer GN.
    Environ Int; 2006 Apr 01; 32(3):405-11. PubMed ID: 16310852
    [Abstract] [Full Text] [Related]

  • 12. Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.
    Galvagno S, Casciaro G, Casu S, Martino M, Mingazzini C, Russo A, Portofino S.
    Waste Manag; 2009 Feb 01; 29(2):678-89. PubMed ID: 18657408
    [Abstract] [Full Text] [Related]

  • 13. Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.
    Khoo HH, Lim TZ, Tan RB.
    Sci Total Environ; 2010 Feb 15; 408(6):1367-73. PubMed ID: 19926117
    [Abstract] [Full Text] [Related]

  • 14. Gasification characteristics of MSW and an ANN prediction model.
    Xiao G, Ni MJ, Chi Y, Jin BS, Xiao R, Zhong ZP, Huang YJ.
    Waste Manag; 2009 Jan 15; 29(1):240-4. PubMed ID: 18420400
    [Abstract] [Full Text] [Related]

  • 15. Catalytic gasification of refuse-derived fuel in a two-stage laboratory scale pyrolysis/gasification unit with catalyst based on clay minerals.
    Šuhaj P, Haydary J, Husár J, Steltenpohl P, Šupa I.
    Waste Manag; 2019 Feb 15; 85():1-10. PubMed ID: 30803562
    [Abstract] [Full Text] [Related]

  • 16. Kinetics and product distribution of end of life tyres (ELTs) pyrolysis: a novel approach in polyisoprene and SBR thermal cracking.
    Al-Salem SM, Lettieri P, Baeyens J.
    J Hazard Mater; 2009 Dec 30; 172(2-3):1690-4. PubMed ID: 19713038
    [Abstract] [Full Text] [Related]

  • 17. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W, van der Voet E, Zhang Y, Huppes G.
    Sci Total Environ; 2009 Feb 15; 407(5):1517-26. PubMed ID: 19068268
    [Abstract] [Full Text] [Related]

  • 18. Prediction of syngas quality for two-stage gasification of selected waste feedstocks.
    De Filippis P, Borgianni C, Paolucci M, Pochetti F.
    Waste Manag; 2004 Feb 15; 24(6):633-9. PubMed ID: 15219922
    [Abstract] [Full Text] [Related]

  • 19. An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty.
    Li YP, Huang GH.
    Sci Total Environ; 2010 Sep 15; 408(20):4296-308. PubMed ID: 20591470
    [Abstract] [Full Text] [Related]

  • 20. Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG).
    Kantarelis E, Donaj P, Yang W, Zabaniotou A.
    J Hazard Mater; 2009 Aug 15; 167(1-3):675-84. PubMed ID: 19237247
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.