These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
387 related items for PubMed ID: 19159796
1. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. Liu T, Wang S, Chen G. Talanta; 2009 Mar 15; 77(5):1767-73. PubMed ID: 19159796 [Abstract] [Full Text] [Related]
2. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis. Bao H, Chen Q, Zhang L, Chen G. Analyst; 2011 Dec 21; 136(24):5190-6. PubMed ID: 22013584 [Abstract] [Full Text] [Related]
3. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis. Wang S, Chen Z, Yang P, Chen G. Proteomics; 2008 May 21; 8(9):1785-8. PubMed ID: 18442168 [Abstract] [Full Text] [Related]
4. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis. Fan H, Bao H, Zhang L, Chen G. Proteomics; 2011 Aug 21; 11(16):3420-3. PubMed ID: 21751341 [Abstract] [Full Text] [Related]
5. Fiber-packed channel bioreactor for microfluidic protein digestion. Fan H, Chen G. Proteomics; 2007 Oct 21; 7(19):3445-9. PubMed ID: 17722209 [Abstract] [Full Text] [Related]
6. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping. Bao H, Lui T, Zhang L, Chen G. Proteomics; 2009 Feb 21; 9(4):1114-7. PubMed ID: 19180540 [Abstract] [Full Text] [Related]
7. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Ma J, Liang Z, Qiao X, Deng Q, Tao D, Zhang L, Zhang Y. Anal Chem; 2008 Apr 15; 80(8):2949-56. PubMed ID: 18333626 [Abstract] [Full Text] [Related]
8. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. Bao H, Zhang L, Chen G. J Chromatogr A; 2013 Oct 04; 1310():74-81. PubMed ID: 23998335 [Abstract] [Full Text] [Related]
9. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith. Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y. Proteomics; 2011 Mar 04; 11(5):991-5. PubMed ID: 21280225 [Abstract] [Full Text] [Related]
10. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors. Zhang P, Gao M, Zhu S, Lei J, Zhang X. J Chromatogr A; 2011 Nov 25; 1218(47):8567-71. PubMed ID: 22024345 [Abstract] [Full Text] [Related]
11. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres. Li Y, Yan B, Deng C, Yu W, Xu X, Yang P, Zhang X. Proteomics; 2007 Jul 25; 7(14):2330-9. PubMed ID: 17570518 [Abstract] [Full Text] [Related]
12. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping. Fan H, Yao F, Xu S, Chen G. Talanta; 2013 Dec 15; 117():119-26. PubMed ID: 24209319 [Abstract] [Full Text] [Related]
13. Integration of electrodes in a suction cup-driven microchip for alternating current-accelerated proteolysis. Liu T, Bao H, Zhang L, Chen G. Electrophoresis; 2009 Sep 15; 30(18):3265-8. PubMed ID: 19705354 [Abstract] [Full Text] [Related]
14. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores. Fan H, Chen Z, Zhang L, Yang P, Chen G. J Chromatogr A; 2008 Feb 01; 1179(2):224-8. PubMed ID: 18096173 [Abstract] [Full Text] [Related]
15. Hydrophilic monolith based immobilized enzyme reactors in capillary and on microchip for high-throughput proteomic analysis. Liang Y, Tao D, Ma J, Sun L, Liang Z, Zhang L, Zhang Y. J Chromatogr A; 2011 May 20; 1218(20):2898-905. PubMed ID: 21450299 [Abstract] [Full Text] [Related]
16. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis. Liu J, Lin S, Qi D, Deng C, Yang P, Zhang X. J Chromatogr A; 2007 Dec 28; 1176(1-2):169-77. PubMed ID: 18021785 [Abstract] [Full Text] [Related]
17. Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Wang S, Bao H, Yang P, Chen G. Anal Chim Acta; 2008 Apr 07; 612(2):182-9. PubMed ID: 18358864 [Abstract] [Full Text] [Related]
18. Monolithic bioreactor immobilizing trypsin for high-throughput analysis. Kato M, Inuzuka K, Sakai-Kato K, Toyo'oka T. Anal Chem; 2005 Mar 15; 77(6):1813-8. PubMed ID: 15762590 [Abstract] [Full Text] [Related]
19. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H, Yuan H, Liang Y, Xia S, Zhao Q, Wu Q, Zhang L, Liang Z, Zhang Y. J Chromatogr A; 2012 Jul 13; 1246():111-6. PubMed ID: 22446077 [Abstract] [Full Text] [Related]
20. A novel organic-inorganic hybrid monolith for trypsin immobilization. Wu S, Ma J, Yang K, Liu J, Liang Z, Zhang L, Zhang Y. Sci China Life Sci; 2011 Jan 13; 54(1):54-9. PubMed ID: 21253871 [Abstract] [Full Text] [Related] Page: [Next] [New Search]