These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


105 related items for PubMed ID: 19163847

  • 1. A simulation study assessing the efficiency of deriving evoked responses using high stimulus rate.
    Wang T, Su YY, Shen Q, Ma J.
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5033-6. PubMed ID: 19163847
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. New metric for optimizing Continuous Loop Averaging Deconvolution (CLAD) sequences under the 1/f noise model.
    Peng X, Yuan H, Chen W, Wang T, Ding L.
    PLoS One; 2017; 12(4):e0175354. PubMed ID: 28414803
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Continuous- and discrete-time stimulus sequences for high stimulus rate paradigm in evoked potential studies.
    Wang T, Huang JH, Lin L, Zhan CA.
    Comput Math Methods Med; 2013; 2013():396034. PubMed ID: 23606900
    [Abstract] [Full Text] [Related]

  • 8. Effects of rate (0.3-40/s) on simultaneously recorded auditory brainstem, middle and late responses using deconvolution.
    Holt F, Özdamar Ö.
    Clin Neurophysiol; 2016 Feb; 127(2):1589-1602. PubMed ID: 26639172
    [Abstract] [Full Text] [Related]

  • 9. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study.
    Bardy F, Van Dun B, Dillon H, Cowan R.
    J Neural Eng; 2014 Aug; 11(4):046016. PubMed ID: 24963952
    [Abstract] [Full Text] [Related]

  • 10. Morphological changes in the middle latency response using maximum length sequence stimuli.
    Nagle S, Musiek FE.
    J Am Acad Audiol; 2009 Sep; 20(8):492-502. PubMed ID: 19764169
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Comparison of Auditory Middle-Latency Responses From Two Deconvolution Methods at 40 Hz.
    Tan XD, Peng X, Zhan CA, Wang T.
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1157-66. PubMed ID: 26441440
    [Abstract] [Full Text] [Related]

  • 15. Physiology-based modeling of cortical auditory evoked potentials.
    Kerr CC, Rennie CJ, Robinson PA.
    Biol Cybern; 2008 Feb; 98(2):171-84. PubMed ID: 18057953
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A model for the mechanism of generating the auditory evoked field.
    Hamada T.
    Biol Cybern; 2006 Feb; 94(2):143-8. PubMed ID: 16292561
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Deconvolution of magnetic acoustic change complex (mACC).
    Bardy F, McMahon CM, Yau SH, Johnson BW.
    Clin Neurophysiol; 2014 Nov; 125(11):2220-2231. PubMed ID: 24704142
    [Abstract] [Full Text] [Related]

  • 20. Simultaneous 3-T fMRI and high-density recording of human auditory evoked potentials.
    Scarff CJ, Reynolds A, Goodyear BG, Ponton CW, Dort JC, Eggermont JJ.
    Neuroimage; 2004 Nov; 23(3):1129-42. PubMed ID: 15528112
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.