These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 19168199
21. Identification of the sources of Escherichia coli in a watershed using carbon-utilization patterns and composite data sets. Moussa SH, Massengale RD. J Water Health; 2008 Jun; 6(2):197-207. PubMed ID: 18209282 [Abstract] [Full Text] [Related]
22. Sustainable microbial water quality monitoring programme design using phage-lysis and multivariate techniques. Nnane DE. Sci Total Environ; 2011 Nov 15; 409(24):5188-95. PubMed ID: 21962927 [Abstract] [Full Text] [Related]
23. Phenotypic variations of enterococci in surface waters: analysis of biochemical fingerprinting data from multi-catchments. Ahmed W, Katouli M. J Appl Microbiol; 2008 Aug 15; 105(2):452-8. PubMed ID: 18298525 [Abstract] [Full Text] [Related]
24. Microbial source tracking in a rural watershed dominated by cattle. Graves AK, Hagedorn C, Brooks A, Hagedorn RL, Martin E. Water Res; 2007 Aug 15; 41(16):3729-39. PubMed ID: 17582454 [Abstract] [Full Text] [Related]
25. Fidelity of bacterial source tracking: Escherichia coli vs Enterococcus spp and minimizing assignment of isolates from nonlibrary sources. Hassan WM, Ellender RD, Wang SY. J Appl Microbiol; 2007 Feb 15; 102(2):591-8. PubMed ID: 17241366 [Abstract] [Full Text] [Related]
26. Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Jiang SC, Chu W, Olson BH, He JW, Choi S, Zhang J, Le JY, Gedalanga PB. Appl Microbiol Biotechnol; 2007 Sep 15; 76(4):927-34. PubMed ID: 17589839 [Abstract] [Full Text] [Related]
27. Sourcing faecal pollution: a combination of library-dependent and library-independent methods to identify human faecal pollution in non-sewered catchments. Ahmed W, Stewart J, Gardner T, Powell D, Brooks P, Sullivan D, Tindale N. Water Res; 2007 Aug 15; 41(16):3771-9. PubMed ID: 17482658 [Abstract] [Full Text] [Related]
28. Chemometric approach to validating faecal sterols as source tracer for faecal contamination in water. Saim N, Osman R, Sari Abg Spian DR, Jaafar MZ, Juahir H, Abdullah MP, Ghani FA. Water Res; 2009 Dec 15; 43(20):5023-30. PubMed ID: 19896157 [Abstract] [Full Text] [Related]
29. Delineation of a chemical and biological signature for stormwater pollution in an urban river. Salmore AK, Hollis EJ, McLellan SL. J Water Health; 2006 Jun 15; 4(2):247-62. PubMed ID: 16813017 [Abstract] [Full Text] [Related]
30. Multiple lines of evidence to identify the sources of fecal pollution at a freshwater beach in Hamilton Harbour, Lake Ontario. Edge TA, Hill S. Water Res; 2007 Aug 15; 41(16):3585-94. PubMed ID: 17575998 [Abstract] [Full Text] [Related]
31. Phenotypic characterization of Escherichia coli through whole-cell fatty acid profiling to investigate host specificity. Haznedaroglu BZ, Yurtsever D, Lefkowitz JR, Duran M. Water Res; 2007 Feb 15; 41(4):803-9. PubMed ID: 17234236 [Abstract] [Full Text] [Related]
32. The application of a recently isolated strain of Bacteroides (GB-124) to identify human sources of faecal pollution in a temperate river catchment. Ebdon J, Muniesa M, Taylor H. Water Res; 2007 Aug 15; 41(16):3683-90. PubMed ID: 17275065 [Abstract] [Full Text] [Related]
33. Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network. Kirschner AK, Kavka GG, Velimirov B, Mach RL, Sommer R, Farnleitner AH. Water Res; 2009 Aug 15; 43(15):3673-84. PubMed ID: 19552934 [Abstract] [Full Text] [Related]
34. Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study. Harwood VJ, Wiggins B, Hagedorn C, Ellender RD, Gooch J, Kern J, Samadpour M, Chapman AC, Robinson BJ, Thompson BC. J Water Health; 2003 Dec 15; 1(4):153-66. PubMed ID: 15382721 [Abstract] [Full Text] [Related]
35. Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling. Duran M, Yurtsever D, Dunaev T. Water Sci Technol; 2009 Dec 15; 60(10):2659-68. PubMed ID: 19923772 [Abstract] [Full Text] [Related]
36. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. Somarelli JA, Makarewicz JC, Sia R, Simon R. J Environ Manage; 2007 Jan 15; 82(1):60-5. PubMed ID: 16551490 [Abstract] [Full Text] [Related]
37. Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays. Bonkosky M, Hernández-Delgado EA, Sandoz B, Robledo IE, Norat-Ramírez J, Mattei H. Mar Pollut Bull; 2009 Jan 15; 58(1):45-54. PubMed ID: 18952244 [Abstract] [Full Text] [Related]
38. Comparison of the efficacy of an existing versus a locally developed metabolic fingerprint database to identify non-point sources of faecal contamination in a coastal lake. Ahmed W, Tucker J, Harper J, Neller R, Katouli M. Water Res; 2006 Jul 15; 40(12):2339-48. PubMed ID: 16762388 [Abstract] [Full Text] [Related]
39. Determination of faecal pollutants in Torrens and Patawalonga catchment waters in South Australia using faecal sterols. Suprihatin I, Fallowfield H, Bentham R, Cromar N. Water Sci Technol; 2003 Jul 15; 47(7-8):283-9. PubMed ID: 12793691 [Abstract] [Full Text] [Related]
40. Identification of pets and raccoons as sources of bacterial contamination of urban storm sewers using a sequence-based bacterial source tracking method. Ram JL, Thompson B, Turner C, Nechvatal JM, Sheehan H, Bobrin J. Water Res; 2007 Aug 15; 41(16):3605-14. PubMed ID: 17540431 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]